Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury.

  • Weiwei Lin‎ et al.
  • Scientific reports‎
  • 2015‎

Autophagy is essentially a metabolic process, but its in vivo role in nuclear radioprotection remains unexplored. We observed that ex vivo autophagy activation reversed the proliferation inhibition, apoptosis, and DNA damage in irradiated hematopoietic cells. In vivo autophagy activation improved bone marrow cellularity following nuclear radiation exposure. In contrast, defective autophagy in the hematopoietic conditional mouse model worsened the hematopoietic injury, reactive oxygen species (ROS) accumulation and DNA damage caused by nuclear radiation exposure. Strikingly, in vivo defective autophagy caused an absence or reduction in regulatory proteins critical to both homologous recombination (HR) and non-homologous end joining (NHEJ) DNA damage repair pathways, as well as a failure to induce these proteins in response to nuclear radiation. In contrast, in vivo autophagy activation increased most of these proteins in hematopoietic cells. DNA damage assays confirmed the role of in vivo autophagy in the resolution of double-stranded DNA breaks in total bone marrow cells as well as bone marrow stem and progenitor cells upon whole body irradiation. Hence, autophagy protects the hematopoietic system against nuclear radiation injury by conferring and intensifying the HR and NHEJ DNA damage repair pathways and by removing ROS and inhibiting apoptosis.


The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways.

  • Xin Xiao‎ et al.
  • Scientific reports‎
  • 2015‎

The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.


Prioritizing functional phosphorylation sites based on multiple feature integration.

  • Qingyu Xiao‎ et al.
  • Scientific reports‎
  • 2016‎

Protein phosphorylation is an important type of post-translational modification that is involved in a variety of biological activities. Most phosphorylation events occur on serine, threonine and tyrosine residues in eukaryotes. In recent years, many phosphorylation sites have been identified as a result of advances in mass-spectrometric techniques. However, a large percentage of phosphorylation sites may be non-functional. Systematically prioritizing functional sites from a large number of phosphorylation sites will be increasingly important for the study of their biological roles. This study focused on exploring the intrinsic features of functional phosphorylation sites to predict whether a phosphosite is likely to be functional. We found significant differences in the distribution of evolutionary conservation, kinase association, disorder score, and secondary structure between known functional and background phosphorylation datasets. We built four different types of classifiers based on the most representative features and found that their performances were similar. We also prioritized 213,837 human phosphorylation sites from a variety of phosphorylation databases, which will be helpful for subsequent functional studies. All predicted results are available for query and download on our website (Predict Functional Phosphosites, PFP, http://pfp.biosino.org/).


The 14th Ile residue is essential for Leptin function in regulating energy homeostasis in rat.

  • Shuyang Xu‎ et al.
  • Scientific reports‎
  • 2016‎

LEPTIN (LEP) is a circulating hormone released primarily from white adipocytes and is crucial for regulating satiety and energy homeostasis in humans and animals. Using the CRISPR technology, we created a set of Lep mutant rats that carry either null mutations or a deletion of the 14(th) Ile (LEP(∆I14)) in the mature LEP protein. We examined the potential off-target sites (OTS) by whole-genome high-throughput sequencing and/or Sanger-sequencing analysis and found no OTS in mutant rats. Mature LEP(∆I14) is incessantly produced and released to blood at a much elevated level due to the feedback loop. Structure modeling of binding conformation between mutant LEP(∆I14) and LEPTIN receptor (LEPR) suggests that the conformation of LEP(∆I14) impairs its binding with LEPR, consistent with its inability to activate STAT3-binding element in the luciferase reporter assay. Phenotypic study demonstrated that Lep(∆I14) rats recapitulate phenotypes of Lep-null mutant rats including obesity, hyperinsulinemia, hepatic steatosis, nephropathy, and infertility. Compared to the existing ob/ob mouse models, this Lep(∆I14/∆I14) rat strain provides a robust tool for further dissecting the roles of LEP in the diabetes related kidney disease and reproduction problem, beyond its well established function in regulating energy homeostasis.


Exon Junction Complexes can have distinct functional flavours to regulate specific splicing events.

  • Zhen Wang‎ et al.
  • Scientific reports‎
  • 2018‎

The exon junction complex (EJC) deposited on spliced mRNAs, plays a central role in the post-transcriptional gene regulation and specific gene expression. The EJC core complex is associated with multiple peripheral factors involved in various post-splicing events. Here, using recombinant complex reconstitution and transcriptome-wide analysis, we showed that the EJC peripheral protein complexes ASAP and PSAP form distinct complexes with the EJC core and can confer to EJCs distinct alternative splicing regulatory activities. This study provides the first evidence that different EJCs can have distinct functions, illuminating EJC-dependent gene regulation.


Quantitative proteomic analysis using iTRAQ to identify salt-responsive proteins during the germination stage of two Medicago species.

  • Ruicai Long‎ et al.
  • Scientific reports‎
  • 2018‎

Salt stress is one of the primary abiotic stresses responsible for decreasing crop yields worldwide. Germinating seeds can be greatly influenced by saline conditions. In this study, the physiological and phenotypic changes induced by salt treatments (10-50 mM NaCl and Na2SO4 mixtures) were analysed for Zhongmu-3 (Medicago sativa) and R108 (Medicago truncatula) seedlings. Our observations indicated that Zhongmu-3 was more salt-tolerant than R108. To characterize the protein expression profiles of these two Medicago species in response to salt stress, an iTRAQ-based quantitative proteomic analysis was applied to examine salt-responsive proteins. We identified 254 differentially changed salt-responsive proteins. Compared with control levels, the abundance of 121 proteins increased and 44 proteins decreased in salt-treated Zhongmu-3 seedlings, while 119 proteins increased and 18 proteins decreased in R108 seedlings. Moreover, 48 differentially changed proteins were common to Zhongmu-3 and R108 seedlings. A subsequent functional annotation indicated these proteins influenced diverse processes, such as catalytic activity, binding, and antioxidant activity. Furthermore, the corresponding transcript levels of 15 differentially changed proteins were quantified by qRT-PCR. The data presented herein provide new insights into salt-responsive proteins, with potential implications for enhancing the salt tolerance of Medicago species.


ELTD1 facilitates glioma proliferation, migration and invasion by activating JAK/STAT3/HIF-1α signaling axis.

  • Junjun Li‎ et al.
  • Scientific reports‎
  • 2019‎

The upregulation of ELTD1 ([epidermal growth factor (EGF), latrophilin and seven transmembrane domain-containing 1] on chromosome 1) in tumor cells has been reported in several types of cancer and correlates with poor cancer prognosis. However, the role of ELTD1 in glioma progression remains unknown. In this study, we examined ELTD1 expression levels in human glioma cell lines and in sixteen human gliomas of different grades. The molecular effects of ELTD1 in glioma cells were measured using quantitative polymerase chain reaction (qRT-PCR), Western blotting, Cell proliferation assays, Matrigel migration and invasion assays and brain orthotopic xenografts. We found that high expression levels of ELTD1 were positively associated with cancer progression and poor prognosis in human glioma. Mechanistically, ELTD1 activated the JAK/STAT3/HIF-1α signaling axis and p-STAT3 bound with HIF-1α. Taken together, our data provide a plausible mechanism for ELTD1-modulated glioma progression and suggest that ELTD1 may represent a potential therapeutic target in the prevention and therapy of glioma.


Vitamin D ameliorates adipose browning in chronic kidney disease cachexia.

  • Wai W Cheung‎ et al.
  • Scientific reports‎
  • 2020‎

Patients with chronic kidney disease (CKD) are often 25(OH)D3 and 1,25(OH)2D3 insufficient. We studied whether vitamin D repletion could correct aberrant adipose tissue and muscle metabolism in a mouse model of CKD-associated cachexia. Intraperitoneal administration of 25(OH)D3 and 1,25(OH)2D3 (75 μg/kg/day and 60 ng/kg/day respectively for 6 weeks) normalized serum concentrations of 25(OH)D3 and 1,25(OH)2D3 in CKD mice. Vitamin D repletion stimulated appetite, normalized weight gain, and improved fat and lean mass content in CKD mice. Vitamin D supplementation attenuated expression of key molecules involved in adipose tissue browning and ameliorated expression of thermogenic genes in adipose tissue and skeletal muscle in CKD mice. Furthermore, repletion of vitamin D improved skeletal muscle fiber size and in vivo muscle function, normalized muscle collagen content and attenuated muscle fat infiltration as well as pathogenetic molecular pathways related to muscle mass regulation in CKD mice. RNAseq analysis was performed on the gastrocnemius muscle. Ingenuity Pathway Analysis revealed that the top 12 differentially expressed genes in CKD were correlated with impaired muscle and neuron regeneration, enhanced muscle thermogenesis and fibrosis. Importantly, vitamin D repletion normalized the expression of those 12 genes in CKD mice. Vitamin D repletion may be an effective therapeutic strategy for adipose tissue browning and muscle wasting in CKD patients.


Hypofractionated stereotactic radiation therapy activates the peripheral immune response in operable stage I non-small-cell lung cancer.

  • Ting Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

It has been reported that in patients with operable stage I non-small cell lung cancer (NSCLC), overall survival (OS) is better in those who undergo hypofractionated stereotactic radiation therapy (HSRT) than in those who undergo surgery. However, the reason that HSRT has a better OS has not been fully explored. Here, we analyzed reconstitution kinetics in immune cells in the peripheral blood of NSCLC patients after HSRT. We found that HSRT increased the frequency of total T cells, especially the proportion of CD8+ T cells, but decreased the frequency of inhibitory Tregs. Intracellular staining showed that after HSRT, peripheral CD8+ T cells were transformed into activated T cells, which express high levels of TNF-α, IFN-γ, granzyme B and IL-2. HSRT also increased the production of IL-2, TNF-α, and IFN-γ but down-regulated the production of TGF-β in CD4+ T cells. The frequencies of naïve B cells and double-negative B cells were lower, while the proportions of MZ-like B cells, transitional B cells and plasmablast cells were higher after HSRT. Collectively, our results demonstrate that HSRT activates the peripheral immune response and indicate the dynamic variation in peripheral lymphocytes after HSRT, which is very important for optimizing combination treatments in clinical practice.


Adrenergic supersensitivity and impaired neural control of cardiac electrophysiology following regional cardiac sympathetic nerve loss.

  • Srinivas Tapa‎ et al.
  • Scientific reports‎
  • 2020‎

Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.


Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic.

  • Zhiyong Xie‎ et al.
  • Scientific reports‎
  • 2015‎

Levels of neutral poly-/perfluoroalkyl substances (nPFASs) in air and snow collected from Ny-Ålesund were measured and their air-snow exchange was determined to investigate whether they could re-volatilize into the atmosphere driven by means of air-snow exchange. The total concentration of 12 neutral PFASs ranged from 6.7 to 39 pg m(-3) in air and from 330 to 690 pg L(-1) in snow. A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs. For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012. The air-snow exchange was snow-phase controlled for FTOHs and FTAs, and controlled by the air-phase for FOSEs. Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic.


Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors.

  • Jingyi Yan‎ et al.
  • Scientific reports‎
  • 2016‎

The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors.


Interferon regulatory factor-1 activates autophagy to aggravate hepatic ischemia-reperfusion injury via the P38/P62 pathway in mice.

  • Yao Yu‎ et al.
  • Scientific reports‎
  • 2017‎

Increasing evidence has linked autophagy to a detrimental role in hepatic ischemia- reperfusion (IR) injury (IRI). Here we focus on the role of interferon regulatory factor-1 (IRF-1) in regulating autophagy to aggravate hepatic IRI. We found that IRF-1 was up-regulated during hepatic IRI and was associated with an activation of the autophagic signaling. This increased IRF-1 expression, which was allied with high autophagic activity, amplified liver damage to IR, an effect which was abrogated by IRF-1 depletion. Moreover, IRF-1 contributed to P38 induced autophagic and apoptotic cell death, that can play a key role in liver dysfunction. The levels of P62 mRNA and protein were increased when P38 was activated and decreased when P38 was inhibited by SB203580. We conclude that IRF-1 functioned as a trigger to activate autophagy via P38 activation and that P62 was required for this P38-mediated autophagy. IRF-1 appears to exert a pivotal role in hepatic IRI, by predisposing hepatocytes to activate an autophagic pathway. Such an effect promotes autophagic cell death through the P38/P62 pathway. The identification of this novel pathway, that links expression levels of IRF-1 with autophagy, may provide new insights for the generation of novel protective therapies directed against hepatic IRI.


PLK1 protects against sepsis-induced intestinal barrier dysfunction.

  • Yingya Cao‎ et al.
  • Scientific reports‎
  • 2018‎

Sepsis and sepsis-associated intestinal barrier dysfunction are common in intensive care units, with high mortality. The aim of this study is to investigate whether Polo-like kinase 1 (PLK1) ameliorates sepsis-induced intestinal barrier dysfunction in the intestinal epithelium. The mouse intestinal barrier was disrupted after Lipopolysaccharide (LPS) injection due to intestinal epithelial cell apoptosis and proliferation inhibition, accompanied by decreased PLK1. In HT-29 intestinal epithelial cells, LPS stimulation induced cell apoptosis and inhibited cell proliferation. Overexpression of PLK1 partly rescued the apoptosis and proliferation inhibition in HT29 cells caused by LPS. Finally, LPS stimulation promoted the reduction of PLK1, resulting in apoptosis and proliferation inhibition in intestinal epithelial cells, disrupting the intestinal epithelial barrier. These findings indicate that PLK1 might be a potential therapeutic target for the treatment of sepsis-induced intestinal barrier dysfunction.


Epidemiological and Clinical Features of Primary Giant Cell Tumors of the Distal Radium: A Multicenter Retrospective Study in China.

  • Hongbin Cao‎ et al.
  • Scientific reports‎
  • 2017‎

Giant cell tumors of the distal radius are challenging for surgeons because they are associated with high recurrence rates and poor functional outcomes. Between June 2005 and October 2015, patients with primary giant cell tumors of the distal radius were recruited from seven orthopedic centers in China. The patients' clinical features and demographic characteristics were obtained from medical records and reviewed retrospectively. Overall, 48 cases of giant cell tumors of the distal radius were assessed in this study. These patients were more likely to be between 20 and 40 years of age, to have a Campanacci grade of III, and to undergo a surgical style of resection. The prevalence of pathological fractures was 12.5% overall (20.0% in men and 4.3% in women). The prevalence of local recurrence was 30.0% overall (38.1% in men and 21.1% in women) during the average follow-up period of 62.5 months, with a pulmonary metastasis rate of 5.0%. Giant cell tumors of the distal radius were predominant in men and were more likely to recur locally than around the knee. These findings suggest that it is crucial to evaluate the optimal surgical approach for balancing local recurrence control and functional outcomes to reduce the disease burden.


Whole-exome sequencing identifies a novel de novo mutation in DYNC1H1 in epileptic encephalopathies.

  • Zhongdong Lin‎ et al.
  • Scientific reports‎
  • 2017‎

Epileptic encephalopathies (EE) are a group of severe childhood epilepsy disorders characterized by intractable seizures, cognitive impairment and neurological deficits. Recent whole-exome sequencing (WES) studies have implicated significant contribution of de novo mutations to EE. In this study, we utilized WES for identifying causal de novo mutations in 4 parent-offspring trios affected by West syndrome. As a result, we found two deleterious de novo mutations in DYNC1H1 and RTP1 in two trios. Expression profile analysis showed that DYNC1H1 and RTP1 are expressed in almost all brain regions and developmental stages. Interestingly, co-expression and genetic interaction network analyses suggested that DYNC1H1 and RTP1 are tightly associated with known epilepsy genes. Furthermore, we observed that the de novo mutations of DYNC1H1 were identified in several different neuropsychiatric disorders including EE, autism spectrum disorders and intellectual disabilities by previous studies, and these mutations primarily occurred in the functional domain of the protein. Taken together, these results demonstrate DYNC1H1 as a strong candidate and RTP1 as a potential candidate on the onset of EE. In addition, this work also proves WES as a powerful tool for the molecular genetic dissection of children affected by sporadic EE.


Hybrid sequencing and map finding (HySeMaFi): optional strategies for extensively deciphering gene splicing and expression in organisms without reference genome.

  • Guogui Ning‎ et al.
  • Scientific reports‎
  • 2017‎

Using second-generation sequencing (SGS) RNA-Seq strategies, extensive alterative splicing prediction is impractical and high variability of isoforms expression quantification is inevitable in organisms without true reference dataset. we report the development of a novel analysis method, termed hybrid sequencing and map finding (HySeMaFi) which combines the specific strengths of third-generation sequencing (TGS) (PacBio SMRT sequencing) and SGS (Illumina Hi-Seq/MiSeq sequencing) to effectively decipher gene splicing and to reliably estimate the isoforms abundance. Error-corrected long reads from TGS are capable of capturing full length transcripts or as large partial transcript fragments. Both true and false isoforms, from a particular gene, as well as that containing all possible exons, could be generated by employing different assembly methods in SGS. We first develop an effective method which can establish the mapping relationship between the error-corrected long reads and the longest assembled contig in every corresponding gene. According to the mapping data, the true splicing pattern of the genes was reliably detected, and quantification of the isoforms was also effectively determined. HySeMaFi is also the optimal strategy by which to decipher the full exon expression of a specific gene when the longest mapped contigs were chosen as the reference set.


Physiological changes and transcriptome profiling in Saccharum spontaneum L. leaf under water stress and re-watering conditions.

  • Changning Li‎ et al.
  • Scientific reports‎
  • 2021‎

As the polyploidy progenitor of modern sugarcane, Saccharum spontaneum is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported on the mechanism of drought tolerance in S. spontaneum. Herein, the physiological changes of S. spontaneum GXS87-16 at three water-deficit levels (mild, moderate, and severe) and after re-watering during the elongation stage were investigated. RNA sequencing was utilized for global transcriptome profiling of GXS87-16 under severe drought and re-watered conditions. There were significant alterations in the physiological parameters of GXS87-16 in response to drought stress and then recovered differently after re-watering. A total of 1569 differentially expressed genes (DEGs) associated with water stress and re-watering were identified. Notably, the majority of the DEGs were induced by stress. GO functional annotations and KEGG pathway analysis assigned the DEGs to 47 GO categories and 93 pathway categories. The pathway categories were involved in various processes, such as RNA transport, mRNA surveillance, plant hormone signal transduction, and plant-pathogen interaction. The reliability of the RNA-seq results was confirmed by qRT-PCR. This study shed light on the regulatory processes of drought tolerance in S. spontaneum and identifies useful genes for genetic improvement of drought tolerance in sugarcane.


SPK1-transfected UCMSC has better therapeutic activity than UCMSC in the treatment of experimental autoimmune encephalomyelitis model of Multiple sclerosis.

  • Yun-Liang Wang‎ et al.
  • Scientific reports‎
  • 2018‎

Multiple Sclerosis (MS), is a chronic inflammatory autoimmune disorder of the central nervous system that leads to chronic demyelination with axonal damage and neuronal loss. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for MS. In the current study, we investigated the effects of MSCs derived from the human umbilical cord (UCMSC) transfected by sphingosine kinase 1 (SPK1) gene. All the results showed that transplantation of UCMSCs gene modified by SPK1 (UCMSC-SPK1) dramatically reduce the severity of neurological deficits of the experimental autoimmune encephalomyelitis (EAE) mice, paralleling by reductions in demyelination, axonal loss, and astrogliosis. UCMSC-SPK1 transplantation also could inhibit the development of natural killer (NK) responses in the spleen of EAE mice, and increase the ratio of CD4+ CD25+ FoxP3+ (Treg) T cells. Furthermore, we described that a shift in the cytokine response from Th1/Th17 to Th2 was an underlying mechanism that suppressed CNS autoimmunity. UCMSCs transfected by SPK1 gene potentially offer a novel mode for the treatment of MS, and the specific mechanism of SPK1 in treating MS/EAE.


Effects of salt stress on soil enzyme activities and rhizosphere microbial structure in salt-tolerant and -sensitive soybean.

  • Dongwei Han‎ et al.
  • Scientific reports‎
  • 2023‎

Salt is recognized as one of the most major factors that limits soybean yield in acidic soils. Soil enzyme activity and bacterial community have a critical function in improving the tolerance to soybean. Our aim was to assess the activities of soil enzyme, the structure of bacteria and their potential functions for salt resistance between Salt-tolerant (Salt-T) and -sensitive (Salt-S) soybean genotypes when subject to salt stress. Plant biomass, soil physicochemical properties, soil catalase, urease, sucrase, amylase, and acid phosphatase activities, and rhizosphere microbial characteristics were investigated in Salt-T and Salt-S soybean genotypes under salt stress with a pot experiment. Salt stress significantly decreased the soil enzyme activities and changed the rhizosphere microbial structure in a genotype-dependent manner. In addition, 46 ASVs which were enriched in the Salt-T geotype under the salt stress, such as ASV19 (Alicyclobacillus), ASV132 (Tumebacillus), ASV1760 (Mycobacterium) and ASV1357 (Bacillus), which may enhance the tolerance to soybean under salt stress. Moreover, the network structure of Salt-T soybean was simplified by salt stress, which may result in soil bacterial communities being susceptible to external factors. Salt stress altered the strength of soil enzyme activities and the assembly of microbial structure in Salt-T and Salt-S soybean genotypes. Na+, NO3--N, NH4+-N and Olsen-P were the most important driving factors in the structure of bacterial community in both genotypes. Salt-T genotypes enriched several microorganisms that contributed to enhance salt tolerance in soybeans, such as Alicyclobacillus, Tumebacillus, and Bacillus. Nevertheless, the simplified network structure of salt-T genotype due to salt stress may render its bacterial community structure unstable and susceptible.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: