Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains.

  • Jordana B Hutchinson‎ et al.
  • Bioscience reports‎
  • 2015‎

Although the details of the structural involvement of histone H1 in the organization of the nucleosome are quite well understood, the sequential events involved in the recognition of its binding site are not as well known. We have used a recombinant human histone H1 (H1.1) in which the N- and C-terminal domains (NTD/CTD) have been swapped and we have reconstituted it on to a 208-bp nucleosome. We have shown that the swapped version of the protein is still able to bind to nucleosomes through its structurally folded wing helix domain (WHD); however, analytical ultracentrifuge analysis demonstrates its ability to properly fold the chromatin fibre is impaired. Furthermore, FRAP analysis shows that the highly dynamic binding association of histone H1 with the chromatin fibre is altered, with a severely decreased half time of residence. All of this suggests that proper binding of histone H1 to chromatin is determined by the simultaneous and synergistic binding of its WHD-CTD to the nucleosome.


Metformin alters H2A.Z dynamics and regulates androgen dependent prostate cancer progression.

  • Monica Tyagi‎ et al.
  • Oncotarget‎
  • 2018‎

Epigenetic mechanisms involved in prostate cancer include hypermethylation of tumor suppressor genes, general hypomethylation of the genome, and alterations in histone posttranslational modifications (PTMs). In addition, over expression of the histone variant H2A.Z as well as deregulated expression of Polycomb group proteins including EZH2 have been well-documented. Recent evidence supports a role for metformin in prostate cancer (PCa) treatment. However, the mechanism of action of metformin in PCa is poorly understood. We provide data showing that metformin epigenetically targets PCa by altering the levels and gene binding dynamics of histone variant H2A.Z. Moreover, we show that the increase in H2A.Z upon metformin treatment occurs preferentially due to H2A.Z.1 isoform. Chromatin immunoprecipitation (ChIP)-RT PCR analysis indicates that metformin treatment results in an increased H2A.Z occupancy on the androgen receptor (AR) and AR-regulated genes that is more prominent in the androgen dependent AR positive LNCaP cells. Repression of H2A.Z.1 gene by siRNA-mediated knock down identified this H2A.Z isoform to be responsible. Based on preliminary data with an EZH2-specific inhibitor, we suggest that the effects of metformin on the early stages of PCa may involve both EZH2 and H2A.Z through the alteration of different molecular pathways.


Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles.

  • Rebecca Pavlos‎ et al.
  • Scientific reports‎
  • 2017‎

Genes of the human leukocyte antigen (HLA) system encode cell-surface proteins involved in regulation of immune responses, and the way drugs interact with the HLA peptide binding groove is important in the immunopathogenesis of T-cell mediated drug hypersensitivity syndromes. Nevirapine (NVP), is an HIV-1 antiretroviral with treatment-limiting hypersensitivity reactions (HSRs) associated with multiple class I and II HLA alleles. Here we utilize a novel analytical approach to explore these multi-allelic associations by systematically examining HLA molecules for similarities in peptide binding specificities and binding pocket structure. We demonstrate that primary predisposition to cutaneous NVP HSR, seen across ancestral groups, can be attributed to a cluster of HLA-C alleles sharing a common binding groove F pocket with HLA-C*04:01. An independent association with a group of class II alleles which share the HLA-DRB1-P4 pocket is also observed. In contrast, NVP HSR protection is afforded by a cluster of HLA-B alleles defined by a characteristic peptide binding groove B pocket. The results suggest drug-specific interactions within the antigen binding cleft can be shared across HLA molecules with similar binding pockets. We thereby provide an explanation for multiple HLA associations with cutaneous NVP HSR and advance insight into its pathogenic mechanisms.


RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration.

  • Lawrence E Goldfinger‎ et al.
  • The Journal of cell biology‎
  • 2006‎

The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to identify RLIP76 (RalBP1) as a novel R-Ras effector. RLIP76 binds directly to R-Ras in a GTP-dependent manner, but does not physically associate with the closely related paralogues H-Ras and Rap1A. RLIP76 is required for adhesion-induced Rac activation and the resulting cell spreading and migration, as well as for the ability of R-Ras to enhance these functions. RLIP76 regulates Rac activity through the adhesion-induced activation of Arf6 GTPase and activation of Arf6 bypasses the requirement for RLIP76 in Rac activation and cell spreading. Thus, we identify a novel R-Ras effector, RLIP76, which links R-Ras to adhesion-induced Rac activation through a GTPase cascade that mediates cell spreading and migration.


Ion-Ion Proton Transfer and Parallel Ion Parking for the Analysis of Mixtures of Intact Proteins on a Modified Orbitrap Mass Analyzer.

  • Scott A Ugrin‎ et al.
  • Journal of the American Society for Mass Spectrometry‎
  • 2019‎

We have enabled parallel ion parking on a modified Orbitrap Elite™ as a way to control ion-ion proton transfer reactions via selective activation of a range of ions. The result is the concentration of the majority of ion current from multiple charge states of each precursor proteoform into a single charge state, maximizing signal intensity and increasing effective sensitivity compared to conventional MS1 spectra. These techniques were applied in an on-line HPLC, data-dependent MS/MS analysis of intact E. coli ribosomal proteins with HCD fragmentation. With one injection, all but two ribosomal proteins were selected for fragmentation and subsequently identified. The techniques described facilitate rapid identification of intact proteins in complex mixtures and an enhanced ability to observe proteins of low abundance.


O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis.

  • Rodolfo Zentella‎ et al.
  • Genes & development‎
  • 2016‎

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis.

  • Romeo Papazyan‎ et al.
  • eLife‎
  • 2014‎

Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs.


GSK3- and PRMT-1-dependent modifications of desmoplakin control desmoplakin-cytoskeleton dynamics.

  • Lauren V Albrecht‎ et al.
  • The Journal of cell biology‎
  • 2015‎

Intermediate filament (IF) attachment to intercellular junctions is required for skin and heart integrity, but how the strength and dynamics of this attachment are modulated during normal and pathological remodeling is poorly understood. We show that glycogen synthase kinase 3 (GSK3) and protein arginine methyltransferase 1 (PRMT-1) cooperate to orchestrate a series of posttranslational modifications on the IF-anchoring protein desmoplakin (DP) that play an essential role in coordinating cytoskeletal dynamics and cellular adhesion. Front-end electron transfer dissociation mass spectrometry analyses of DP revealed six novel serine phosphorylation sites dependent on GSK3 signaling and four novel arginine methylation sites including R2834, the mutation of which has been associated with arrhythmogenic cardiomyopathy (AC). Inhibition of GSK3 or PRMT-1 or overexpression of the AC-associated mutant R2834H enhanced DP-IF associations and delayed junction assembly. R2834H blocked the GSK3 phosphorylation cascade and reduced DP-GSK3 interactions in cultured keratinocytes and in the hearts of transgenic R2834H DP mice. Interference with this regulatory machinery may contribute to skin and heart diseases.


The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status.

  • Fiyaz Mohammed‎ et al.
  • Oncotarget‎
  • 2017‎

Dysregulated post-translational modification provides a source of altered self-antigens that can stimulate immune responses in autoimmunity, inflammation, and cancer. In recent years, phosphorylated peptides have emerged as a group of tumour-associated antigens presented by MHC molecules and recognised by T cells, and represent promising candidates for cancer immunotherapy. However, the impact of phosphorylation on the antigenic identity of phosphopeptide epitopes is unclear. Here we examined this by determining structures of MHC-bound phosphopeptides bearing canonical position 4-phosphorylations in the presence and absence of their phosphate moiety, and examining phosphopeptide recognition by the T cell receptor (TCR). Strikingly, two peptides exhibited major conformational changes upon phosphorylation, involving a similar molecular mechanism, which focussed changes on the central peptide region most critical for T cell recognition. In contrast, a third epitope displayed little conformational alteration upon phosphorylation. In addition, binding studies demonstrated TCR interaction with an MHC-bound phosphopeptide was both epitope-specific and absolutely dependent upon phosphorylation status. These results highlight the critical influence of phosphorylation on the antigenic identity of naturally processed class I MHC epitopes. In doing so they provide a molecular framework for understanding phosphopeptide-specific immune responses, and have implications for the development of phosphopeptide antigen-specific cancer immunotherapy approaches.


Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins.

  • Yi Hao‎ et al.
  • Current biology : CB‎
  • 2010‎

Formation of epithelial sheets requires that cell division occurs in the plane of the sheet. During mitosis, spindle poles align so the astral microtubules contact the lateral cortex. Confinement of the mammalian Pins protein to the lateral cortex is essential for this process. Defects in signaling through Cdc42 and atypical protein kinase C (aPKC) also cause spindle misorientation. When epithelial cysts are grown in 3D cultures, misorientation creates multiple lumens.


Competition between two MHC binding registers in a single peptide processed from myelin basic protein influences tolerance and susceptibility to autoimmunity.

  • Audrey Seamons‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Experimental allergic encephalomyelitis (EAE) is an animal model for multiple sclerosis induced by stimulating myelin basic protein (MBP)-specific T cells. The MBP-specific repertoire in B10.PL mice is shaped by tolerance mechanisms that eliminate MBP121-150-specific T cells. In contrast, MBPAc1-11-specific T cells escape tolerance and constitute the encephalitogenic repertoire. To determine if this differential tolerance is caused by differences in the abundance of MBP epitopes generated by processing, MBP peptides were eluted from I-Au complexes and analyzed by mass spectrometry. Peptides were identified from both the NH2-terminal and MBP121-150 regions. Unexpectedly, MBPAc1-18 and Ac1-17, which contain the MBPAc1-11 epitope, were much more abundant than MBP121-150 peptides. The results demonstrate that competition between two I-Au binding registers, a low affinity register defined by MBPAc1-11 and a high affinity register defined by MBP5-16, prevents most of the NH2-terminal naturally processed peptides from binding in the MBPAc1-11 register. The small fraction of MBPAc1-18 bound in the MBPAc1-11 register is not sufficient to induce tolerance but provides a ligand for MBPAc1-11-specific T cells during disease. These results provide a basis for both the lack of tolerance to MBPAc1-11 and the ability of this epitope to become a target during autoimmunity.


Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates.

  • Deanna Dryhurst‎ et al.
  • BMC biology‎
  • 2009‎

Within chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in vertebrates, H2A.Z-1 and H2A.Z-2, which are encoded by separate genes and differ by 3 amino acid residues.


H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis.

  • Toyotaka Ishibashi‎ et al.
  • Nucleic acids research‎
  • 2010‎

Despite the identification of H2A.Bbd as a new vertebrate-specific replacement histone variant several years ago, and despite the many in vitro structural characterizations using reconstituted chromatin complexes consisting of this variant, the existence of H2A.Bbd in the cell and its location has remained elusive. Here, we report that the native form of this variant is present in highly advanced spermiogenic fractions of mammalian testis at the time when histones are highly acetylated and being replaced by protamines. It is also present in the nucleosomal chromatin fraction of mature human sperm. The ectopically expressed non-tagged version of the protein is associated with micrococcal nuclease-refractory insoluble fractions of chromatin and in mouse (20T1/2) cell line, H2A.Bbd is enriched at the periphery of chromocenters. The exceedingly rapid evolution of this unique X-chromosome-linked histone variant is shared with other reproductive proteins including those associated with chromatin in the mature sperm (protamines) of many vertebrates. This common rate of evolution provides further support for the functional and structural involvement of this protein in male gametogenesis in mammals.


Evolution of a histone variant involved in compartmental regulation of NAD metabolism.

  • Iva Guberovic‎ et al.
  • Nature structural & molecular biology‎
  • 2021‎

NAD metabolism is essential for all forms of life. Compartmental regulation of NAD+ consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD+ consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications.


Tumor Infiltrating Lymphocytes Target HLA-I Phosphopeptides Derived From Cancer Signaling in Colorectal Cancer.

  • Sarah A Penny‎ et al.
  • Frontiers in immunology‎
  • 2021‎

There is a pressing need for novel immunotherapeutic targets in colorectal cancer (CRC). Cytotoxic T cell infiltration is well established as a key prognostic indicator in CRC, and it is known that these tumor infiltrating lymphocytes (TILs) target and kill tumor cells. However, the specific antigens that drive these CD8+ T cell responses have not been well characterized. Recently, phosphopeptides have emerged as strong candidates for tumor-specific antigens, as dysregulated signaling in cancer leads to increased and aberrant protein phosphorylation. Here, we identify 120 HLA-I phosphopeptides from primary CRC tumors, CRC liver metastases and CRC cell lines using mass spectrometry and assess the tumor-resident immunity against these posttranslationally modified tumor antigens. Several CRC tumor-specific phosphopeptides were presented by multiple patients' tumors in our cohort (21% to 40%), and many have previously been identified on other malignancies (58% of HLA-A*02 CRC phosphopeptides). These shared antigens derived from mitogenic signaling pathways, including p53, Wnt and MAPK, and are therefore markers of malignancy. The identification of public tumor antigens will allow for the development of broadly applicable targeted therapeutics. Through analysis of TIL cytokine responses to these phosphopeptides, we have established that they are already playing a key role in tumor-resident immunity. Multifunctional CD8+ TILs from primary and metastatic tumors recognized the HLA-I phosphopeptides presented by their originating tumor. Furthermore, TILs taken from other CRC patients' tumors targeted two of these phosphopeptides. In another cohort of CRC patients, the same HLA-I phosphopeptides induced higher peripheral T cell responses than they did in healthy donors, suggesting that these immune responses are specifically activated in CRC patients. Collectively, these results establish HLA-I phosphopeptides as targets of the tumor-resident immunity in CRC, and highlight their potential as candidates for future immunotherapeutic strategies.


Reinspection of a Clinical Proteomics Tumor Analysis Consortium (CPTAC) Dataset with Cloud Computing Reveals Abundant Post-Translational Modifications and Protein Sequence Variants.

  • Amol Prakash‎ et al.
  • Cancers‎
  • 2021‎

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has provided some of the most in-depth analyses of the phenotypes of human tumors ever constructed. Today, the majority of proteomic data analysis is still performed using software housed on desktop computers which limits the number of sequence variants and post-translational modifications that can be considered. The original CPTAC studies limited the search for PTMs to only samples that were chemically enriched for those modified peptides. Similarly, the only sequence variants considered were those with strong evidence at the exon or transcript level. In this multi-institutional collaborative reanalysis, we utilized unbiased protein databases containing millions of human sequence variants in conjunction with hundreds of common post-translational modifications. Using these tools, we identified tens of thousands of high-confidence PTMs and sequence variants. We identified 4132 phosphorylated peptides in nonenriched samples, 93% of which were confirmed in the samples which were chemically enriched for phosphopeptides. In addition, our results also cover 90% of the high-confidence variants reported by the original proteogenomics study, without the need for sample specific next-generation sequencing. Finally, we report fivefold more somatic and germline variants that have an independent evidence at the peptide level, including mutations in ERRB2 and BCAS1. In this reanalysis of CPTAC proteomic data with cloud computing, we present an openly available and searchable web resource of the highest-coverage proteomic profiling of human tumors described to date.


A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front-back polarity.

  • Alba Juanes-Garcia‎ et al.
  • The Journal of cell biology‎
  • 2015‎

In this study, we show that the role of nonmuscle myosin II (NMII)-B in front-back migratory cell polarity is controlled by a short stretch of amino acids containing five serines (1935-1941). This motif resides near the junction between the C terminus helical and nonhelical tail domains. Removal of this motif inhibited NMII-B assembly, whereas its insertion into NMII-A endowed an NMII-B-like ability to generate large actomyosin bundles that determine the rear of the cell. Phosphomimetic mutation of the five serines also inhibited NMII-B assembly, rendering it unable to support front-back polarization. Mass spectrometric analysis showed that several of these serines are phosphorylated in live cells. Single-site mutagenesis showed that serine 1935 is a major regulatory site of NMII-B function. These data reveal a novel regulatory mechanism of NMII in polarized migrating cells by identifying a key molecular determinant that confers NMII isoform functional specificity.


Acyclovir Has Low but Detectable Influence on HLA-B*57:01 Specificity without Inducing Hypersensitivity.

  • Imir G Metushi‎ et al.
  • PloS one‎
  • 2015‎

Immune mediated adverse drug reactions (IM-ADRs) remain a significant source of patient morbidity that have more recently been shown to be associated with specific class I and/or II human leukocyte antigen (HLA) alleles. Abacavir-induced hypersensitivity syndrome is a CD8+ T cell dependent IM-ADR that is exclusively mediated by HLA-B*57:01. We and others have previously shown that abacavir can occupy the floor of the peptide binding groove of HLA-B*57:01 molecules, increasing the affinity of certain self peptides resulting in an altered peptide-binding repertoire. Here, we have identified another drug, acyclovir, which appears to act in a similar fashion. As with abacavir, acyclovir showed a dose dependent increase in affinity for peptides with valine and isoleucine at their C-terminus. In agreement with the binding studies, HLA-B*57:01 peptide-elution studies performed in the presence of acyclovir revealed an increased number of endogenously bound peptides with a C-terminal isoleucine. Accordingly, we have hypothesized that acyclovir acts by the same mechanism as abacavir, although our data also suggest the overall effect is much smaller: the largest changes of peptide affinity for acyclovir were 2-5 fold, whereas for abacavir this effect was as much as 1000-fold. Unlike abacavir, acyclovir is not known to cause IM-ADRs. We conclude that the modest effect of acyclovir on HLA binding affinity in contrast to the large effect of abacavir is insufficient to trigger a hypersensitivity syndrome. We further support this by functional in vitro studies where acyclovir, unlike abacavir, was unable to produce an increase in IFN-γ upon expansion of HLA-B*57:01+ PBMCs from healthy donors. Using abacavir and acyclovir as examples we therefore propose an in vitro pre-clinical screening strategy, whereby thresholds can be applied to MHC-peptide binding assays to determine the likelihood that a drug could cause a clinically relevant IM-ADR.


The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA.

  • Rodolfo Zentella‎ et al.
  • Nature chemical biology‎
  • 2017‎

Plant development requires coordination among complex signaling networks to enhance the plant's adaptation to changing environments. DELLAs, transcription regulators originally identified as repressors of phytohormone gibberellin signaling, play a central role in integrating multiple signaling activities via direct protein interactions with key transcription factors. Here, we found that DELLA is mono-O-fucosylated by the novel O-fucosyltransferase SPINDLY (SPY) in Arabidopsis thaliana. O-fucosylation activates DELLA by promoting its interaction with key regulators in brassinosteroid- and light-signaling pathways, including BRASSINAZOLE-RESISTANT1 (BZR1), PHYTOCHROME-INTERACTING-FACTOR3 (PIF3) and PIF4. Moreover, spy mutants displayed elevated responses to gibberellin and brassinosteroid, and increased expression of common target genes of DELLAs, BZR1 and PIFs. Our study revealed that SPY-dependent protein O-fucosylation plays a key role in regulating plant development. This finding may have broader importance because SPY orthologs are conserved in prokaryotes and eukaryotes, thus suggesting that intracellular O-fucosylation may regulate a wide range of biological processes in diverse organisms.


Anopheles gambiae genome reannotation through synthesis of ab initio and comparative gene prediction algorithms.

  • Jun Li‎ et al.
  • Genome biology‎
  • 2006‎

Complete genome annotation is a necessary tool as Anopheles gambiae researchers probe the biology of this potent malaria vector.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: