Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Patient-derived enteroids provide a platform for the development of therapeutic approaches in microvillus inclusion disease.

  • Meri Kalashyan‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.


Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion.

  • Juan-Manuel Leyva-Castillo‎ et al.
  • Immunity‎
  • 2019‎

Mast cell (MC) mediator release after crosslinking of surface-bound IgE antibody by ingested antigen underlies food allergy. However, IgE antibodies are not uniformly associated with food allergy, and intestinal MC load is an important determinant. Atopic dermatitis (AD), characterized by pruritis and cutaneous sensitization to allergens, including foods, is strongly associated with food allergy. Tape stripping mouse skin, a surrogate for scratching, caused expansion and activation of small intestinal MCs, increased intestinal permeability, and promoted food anaphylaxis in sensitized mice. Tape stripping caused keratinocytes to systemically release interleukin-33 (IL-33), which synergized with intestinal tuft-cell-derived IL-25 to drive the expansion and activation of intestinal type-2 innate lymphoid cells (ILC2s). These provided IL-4, which targeted MCs to expand in the intestine. Duodenal MCs were expanded in AD. In addition to promoting cutaneous sensitization to foods, scratching may promote food anaphylaxis in AD by expanding and activating intestinal MCs.


CD16+CD163+ monocytes traffic to sites of inflammation during necrotizing enterocolitis in premature infants.

  • Oluwabunmi O Olaloye‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

Necrotizing enterocolitis (NEC) is a severe gastrointestinal complication of prematurity. Using suspension and imaging mass cytometry coupled with single-cell RNA sequencing, we demonstrate severe inflammation in patients with NEC. NEC mucosa could be subtyped by an influx of three distinct neutrophil phenotypes (immature, newly emigrated, and aged). Furthermore, CD16+CD163+ monocytes/Mϕ, correlated with newly emigrated neutrophils, were specifically enriched in NEC mucosa, found adjacent to the blood vessels, and increased in circulation of infants with surgical NEC, suggesting trafficking from the periphery to areas of inflammation. NEC-specific monocytes/Mϕ transcribed inflammatory genes, including TREM1, IL1A, IL1B, and calprotectin, and neutrophil recruitment genes IL8, CXCL1, CXCL2, CXCL5 and had enrichment of gene sets in pathways involved in chemotaxis, migration, phagocytosis, and reactive oxygen species generation. In summary, we identify a novel subtype of inflammatory monocytes/Mϕ associated with NEC that should be further evaluated as a potential biomarker of surgical NEC and a target for the development of NEC-specific therapeutics.


Neonatal-Onset Chronic Diarrhea Caused by Homozygous Nonsense WNT2B Mutations.

  • Amy E O'Connell‎ et al.
  • American journal of human genetics‎
  • 2018‎

Homozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon. Immunofluorescence demonstrated diminished staining for OLFM4, a marker for intestinal stem cells (ISCs). The enteroids generated from WNT2B-deficient intestinal epithelium could not be expanded and did not survive passage. Addition of CHIR-99021 (a GSK3A and GSK3B inhibitor and activator of canonical WNT/β-CATENIN signaling) could not rescue WNT2B-deficient enteroids. Addition of supplemental recombinant murine WNT2B was able to perpetuate small enteroids for multiple passages but failed to expand their number. Enteroids showed a 10-fold increase in the expression of LEF1 mRNA and a 100-fold reduction in TLR4 expression, compared with controls by quantitative RT-PCR, indicating alterations in canonical WNT and microbial pattern-recognition signaling. In summary, individuals with homozygous nonsense mutations in WNT2B demonstrate severe intestinal dysregulation associated with decreased ISC number and function, likely explaining their diarrheal phenotype. WNT2B deficiency should be considered for individuals with neonatal-onset diarrhea.


Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration.

  • Yousef R Badran‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

The treatment of chronic mucocutaneous ulceration is challenging, and only some patients respond selectively to inhibitors of tumor necrosis factor-α (TNF). TNF activates opposing pathways leading to caspase-8-mediated apoptosis as well as nuclear factor κB (NF-κB)-dependent cell survival. We investigated the etiology of autosomal-dominant, mucocutaneous ulceration in a family whose proband was dependent on anti-TNF therapy for sustained remission. A heterozygous mutation in RELA, encoding the NF-κB subunit RelA, segregated with the disease phenotype and resulted in RelA haploinsufficiency. The patients' fibroblasts exhibited increased apoptosis in response to TNF, impaired NF-κB activation, and defective expression of NF-κB-dependent antiapoptotic genes. Rela+/- mice have similarly impaired NF-κB activation, develop cutaneous ulceration from TNF exposure, and exhibit severe dextran sodium sulfate-induced colitis, ameliorated by TNF inhibition. These findings demonstrate an essential contribution of biallelic RELA expression in protecting stromal cells from TNF-mediated cell death, thus delineating the mechanisms driving the effectiveness of TNF inhibition in this disease.


Therapy Development for Microvillus Inclusion Disease using Patient-derived Enteroids.

  • Meri Kalashyan‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid-base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex Immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na + /H + exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking anti-diarrheal drug, Crofelemer, dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. Inhibition of Notch signaling with the γ-secretase inhibitor, DAPT, recovered apical brush border structure and functional Na + /H + exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum- and glucocorticoid-induced protein kinase 2 (SGK2), and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.


A Distinct Esophageal mRNA Pattern Identifies Eosinophilic Esophagitis Patients With Food Impactions.

  • Benjamin F Sallis‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Eosinophilic esophagitis (EoE), a Th2-type allergic immune disorder characterized by an eosinophil-rich esophageal immune infiltrate, is often associated with food impaction (FI) in pediatric patients but the molecular mechanisms underlying the development of this complication are not well understood. We aim to identify molecular pathways involved in the development of FI. Due to large variations in disease presentation, our analysis was further geared to find markers capable of distinguishing EoE patients that are prone to develop food impactions and thus expand an established medical algorithm for EoE by developing a secondary analysis that allows for the identification of patients with food impactions as a distinct patient population. To this end, mRNA patterns from esophageal biopsies of pediatric EoE patients presenting with and without food impactions were compared and machine learning techniques were employed to establish a diagnostic probability score to identify patients with food impactions (EoE+FI). Our analysis showed that EoE patients with food impaction were indistinguishable from other EoE patients based on their tissue eosinophil count, serum IgE levels, or the mRNA transcriptome-based p(EoE). Irrespectively, an additional analysis loop of the medical algorithm was able to separate EoE+FI patients and a composite FI-score was established that identified such patients with a sensitivity of 93% and a specificity of 100%. The esophageal mRNA pattern of EoE+FI patients was typified by lower expression levels of mast cell markers and Th2 associated transcripts, such as FCERIB, CPA3, CCL2, IL4, and IL5. Furthermore, lower expression levels of regulators of esophageal motility (NOS2 and HIF1A) were detected in EoE+FI. The EoE+FI -specific mRNA pattern indicates that impaired motility may be one underlying factor for the development of food impactions in pediatric patients. The availability of improved diagnostic tools such as a medical algorithm for EoE subpopulations will have a direct impact on clinical practice because such strategies can identify molecular inflammatory characteristics of individual EoE patients, which, in turn, will facilitate the development of individualized therapeutic approaches that target the relevant pathways affected in each patient.


An algorithm for the classification of mRNA patterns in eosinophilic esophagitis: Integration of machine learning.

  • Benjamin F Sallis‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

Diagnostic evaluation of eosinophilic esophagitis (EoE) remains difficult, particularly the assessment of the patient's allergic status.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: