Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Modulating and measuring Wingless signalling.

  • Jean-Paul Vincent‎
  • Methods (San Diego, Calif.)‎
  • 2014‎

The main Wnt ligand of Drosophila activates a conserved canonical signalling pathway to regulate a plethora of cellular activities during development, regeneration and nervous system function. Here I first describe experimental means of measuring and modulating Wingless signalling in Drosophila cell culture. Various reporters have been devised by placing TCF-binding sites or DNA fragments from known target genes upstream of luciferase-coding sequences. Signalling can be activated in cells by addition of Wingless conditioned medium, treatment with a chemical inhibitor of Shaggy/GSK3 or transfection with a plasmid encoding activated Armadillo (Drosophila β-catenin). Measuring Wingless signalling in intact tissue is somewhat more challenging than in cell culture. Synthetic transgenic reporters have been devised but further improvements are needed to achieve sensitive responsiveness to Wingless at all times and places. As an alternative, gene traps in frizzled3 and notum/wingful, two context-independent endogenous targets, can be used as reporters. It is hoped that further modification of these loci could lead to more versatile and sensitive means of detecting signalling. Many genetic tools are available to trigger ectopic signalling or prevent endogenous signalling. These mostly rely on RNAi-producing transgenes or the generation of mutant patches by mitotic recombination. New developments in genome engineering are opening further means of manipulating the components of Wingless signalling with exquisite temporal and spatial precision.


Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs.

  • Yasuo Yamazaki‎ et al.
  • Nature cell biology‎
  • 2016‎

The apical and basolateral membranes of epithelia are insulated from each other, preventing the transfer of extracellular proteins from one side to the other. Thus, a signalling protein produced apically is not expected to reach basolateral receptors. Evidence suggests that Wingless, the main Drosophila Wnt, is secreted apically in the embryonic epidermis. However, in the wing imaginal disc epithelium, Wingless is mostly seen on the basolateral membrane where it spreads from secreting to receiving cells. Here we examine the apico-basal movement of Wingless in Wingless-producing cells of wing imaginal discs. We find that it is presented first on the apical surface before making its way to the basolateral surface, where it is released and allowed to interact with signalling receptors. We show that Wingless transcytosis involves dynamin-dependent endocytosis from the apical surface. Subsequent trafficking from early apical endosomes to the basolateral surface requires Godzilla, a member of the RNF family of membrane-anchored E3 ubiquitin ligases. Without such transport, Wingless signalling is strongly reduced in this tissue.


Rapid and robust optogenetic control of gene expression in Drosophila.

  • Florencia di Pietro‎ et al.
  • Developmental cell‎
  • 2021‎

Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.


Accelerated homologous recombination and subsequent genome modification in Drosophila.

  • Luis Alberto Baena-Lopez‎ et al.
  • Development (Cambridge, England)‎
  • 2013‎

Gene targeting by 'ends-out' homologous recombination enables the deletion of genomic sequences and concurrent introduction of exogenous DNA with base-pair precision without sequence constraint. In Drosophila, this powerful technique has remained laborious and hence seldom implemented. We describe a targeting vector and protocols that achieve this at high frequency and with very few false positives in Drosophila, either with a two-generation crossing scheme or by direct injection in embryos. The frequency of injection-mediated gene targeting can be further increased with CRISPR-induced double-strand breaks within the region to be deleted, thus making homologous recombination almost as easy as conventional transgenesis. Our targeting vector replaces genomic sequences with a multifunctional fragment comprising an easy-to-select genetic marker, a fluorescent reporter, as well as an attP site, which acts as a landing platform for reintegration vectors. These vectors allow the insertion of a variety of transcription reporters or cDNAs to express tagged or mutant isoforms at endogenous levels. In addition, they pave the way for difficult experiments such as tissue-specific allele switching and functional analysis in post-mitotic or polyploid cells. Therefore, our method retains the advantages of homologous recombination while capitalising on the mutagenic power of CRISPR.


Segment boundary formation in Drosophila embryos.

  • Camilla W Larsen‎ et al.
  • Development (Cambridge, England)‎
  • 2003‎

In Drosophila embryos, segment boundaries form at the posterior edge of each stripe of engrailed expression. We have used an HRP-CD2 transgene to follow by transmission electron microscopy the cell shape changes that accompany boundary formation. The first change is a loosening of cell contact at the apical side of cells on either side of the incipient boundary. Then, the engrailed-expressing cells flanking the boundary undergo apical constriction, move inwards and adopt a bottle morphology. Eventually, grooves regress, first on the ventral side, then laterally. We noted that groove formation and regression are contemporaneous with germ band retraction and shortening, respectively, suggesting that these rearrangements could also contribute to groove morphology. The cellular changes accompanying groove formation require that Hedgehog signalling be activated, and, as a result, a target of Ci expressed, at the posterior of each boundary (obvious targets like stripe and rhomboid appear not to be involved). In addition, Engrailed must be expressed at the anterior side of each boundary, even if Hedgehog signalling is artificially maintained. Thus, there are distinct genetic requirements on either side of the boundary. In addition, Wingless signalling at the anterior of the domains of engrailed (and hedgehog) expression represses groove formation and thus ensures that segment boundaries form only at the posterior.


Off-track takes Frizzled off the canonical path.

  • Jean-Paul Vincent‎ et al.
  • The EMBO journal‎
  • 2011‎

EMBO J 30 18, 3729–3740 (2011); published online July 19 2011 Like many other signalling pathways, the Wnt pathway is seen as part of a network that integrates extracellular information mediated by a variety of cell surface proteins to produce cell context-specific outputs. The identification of Frizzled as Wnt receptors (Bhanot et al, 1996) provided the essential link between extracellular Wnts and the intracellular components of Wnt signal transduction. Recent observations, however, indicate a rather complex interplay of this ‘core’ receptor element with an increasing number of co-receptors. In this issue of The EMBO Journal, Tolwinski and Borchers (Peradziryi et al, 2011) describe PTK7/Off-track as a novel co-receptor element that might govern specificity in cellular Wnt responses.


Disruption of Vps4 and JNK function in Drosophila causes tumour growth.

  • Lina M Rodahl‎ et al.
  • PloS one‎
  • 2009‎

Several regulators of endocytic trafficking have recently been identified as tumour suppressors in Drosophila. These include components of the endosomal sorting complex required for transport (ESCRT) machinery. Disruption of subunits of ESCRT-I and -II leads to cell-autonomous endosomal accumulation of ubiquitinated receptors, loss of apicobasal polarity and epithelial integrity, and increased cell death. Here we report that disruption of the ATPase dVps4, the most downstream component of the ESCRT machinery, causes the same array of cellular phenotypes. We find that loss of epithelial integrity and increased apoptosis, but not loss of cell polarity, require the activation of JNK signalling. Abrogation of JNK signalling prevents apoptosis in dVps4 deficient cells. Indeed double deficiency in dVps4 and JNK signalling leads to the formation of neoplastic tumours. We conclude that dvps4 is a tumour suppressor in Drosophila and that JNK is central to the cell-autonomous phenotypes of ESCRT-deficient cells.


Patterning and growth control in vivo by an engineered GFP gradient.

  • Kristina S Stapornwongkul‎ et al.
  • Science (New York, N.Y.)‎
  • 2020‎

Morphogen gradients provide positional information during development. To uncover the minimal requirements for morphogen gradient formation, we have engineered a synthetic morphogen in Drosophila wing primordia. We show that an inert protein, green fluorescent protein (GFP), can form a detectable diffusion-based gradient in the presence of surface-associated anti-GFP nanobodies, which modulate the gradient by trapping the ligand and limiting leakage from the tissue. We next fused anti-GFP nanobodies to the receptors of Dpp, a natural morphogen, to render them responsive to extracellular GFP. In the presence of these engineered receptors, GFP could replace Dpp to organize patterning and growth in vivo. Concomitant expression of glycosylphosphatidylinositol (GPI)-anchored nonsignaling receptors further improved patterning, to near-wild-type quality. Theoretical arguments suggest that GPI anchorage could be important for these receptors to expand the gradient length scale while at the same time reducing leakage.


Frizzled-Dependent Planar Cell Polarity without Secreted Wnt Ligands.

  • Joyce J S Yu‎ et al.
  • Developmental cell‎
  • 2020‎

Planar cell polarity (PCP) organizes the orientation of cellular protrusions and migratory activity within the tissue plane. PCP establishment involves the subcellular polarization of core PCP components. It has been suggested that Wnt gradients could provide a global cue that coordinates local PCP with tissue axes. Here, we dissect the role of Wnt ligands in the orientation of hairs of Drosophila wings, an established system for the study of PCP. We found that PCP was normal in quintuple mutant wings that rely solely on the membrane-tethered Wingless for Wnt signaling, suggesting that a Wnt gradient is not required. We then used a nanobody-based approach to trap Wntless in the endoplasmic reticulum, and hence prevent all Wnt secretion, specifically during the period of PCP establishment. PCP was still established. We conclude that, even though Wnt ligands could contribute to PCP, they are not essential, and another global cue must exist for tissue-wide polarization.


EGFR signaling coordinates patterning with cell survival during Drosophila epidermal development.

  • Samuel H Crossman‎ et al.
  • PLoS biology‎
  • 2018‎

Extensive apoptosis is often seen in patterning mutants, suggesting that tissues can detect and eliminate potentially harmful mis-specified cells. Here, we show that the pattern of apoptosis in the embryonic epidermis of Drosophila is not a response to fate mis-specification but can instead be explained by the limiting availability of prosurvival signaling molecules released from locations determined by patterning information. In wild-type embryos, the segmentation cascade elicits the segmental production of several epidermal growth factor receptor (EGFR) ligands, including the transforming growth factor Spitz (TGFα), and the neuregulin, Vein. This leads to an undulating pattern of signaling activity, which prevents expression of the proapoptotic gene head involution defective (hid) throughout the epidermis. In segmentation mutants, where specific peaks of EGFR ligands fail to form, gaps in signaling activity appear, leading to coincident hid up-regulation and subsequent cell death. These data provide a mechanistic understanding of how cell survival, and thus appropriate tissue size, is made contingent on correct patterning.


Producing cells retain and recycle Wingless in Drosophila embryos.

  • Sven Pfeiffer‎ et al.
  • Current biology : CB‎
  • 2002‎

There is considerable interest in the mechanisms that drive and control the spread of morphogens in developing animals. Although much attention is given to events occurring after release from expressing cells, release itself could be an important modulator of range. Indeed, a dedicated protein, Dispatched, is needed to release Hedgehog from the surface of expressing cells. We find that, in Drosophila embryos, much Wingless (as well as a GFP-Wingless fusion protein) remains tightly associated with secreting cells. Retention occurs both within the secretory pathway and at the cell surface and requires functional heparan sulfate proteoglycans. As a further means of retention, secreting cells readily endocytose Wingless protein that does reach the cell surface. Such endocytosed Wingless can in turn be sent back to the cell surface (the first direct observation of ligand recycling in live embryos). Recycling may serve to sustain high-level signaling in this region of the epidermis.


Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal β-catenin/Armadillo.

  • Maria Gagliardi‎ et al.
  • Journal of cell science‎
  • 2014‎

A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts.


Plasticity of both planar cell polarity and cell identity during the development of Drosophila.

  • Pedro Saavedra‎ et al.
  • eLife‎
  • 2014‎

Drosophila has helped us understand the genetic mechanisms of pattern formation. Particularly useful have been those organs in which different cell identities and polarities are displayed cell by cell in the cuticle and epidermis (Lawrence, 1992; Bejsovec and Wieschaus, 1993; Freeman, 1997). Here we use the pattern of larval denticles and muscle attachments and ask how this pattern is maintained and renewed over the larval moult cycles. During larval growth each epidermal cell increases manyfold in size but neither divides nor dies. We follow individuals from moult to moult, tracking marked cells and find that, as cells are repositioned and alter their neighbours, their identities change to compensate and the pattern is conserved. Single cells adopting a new fate may even acquire a new polarity: an identified cell that makes a forward-pointing denticle in the first larval stage may make a backward-pointing denticle in the second and third larval stages. DOI: http://dx.doi.org/10.7554/eLife.01569.001.


Novel initiator caspase reporters uncover previously unknown features of caspase-activating cells.

  • Luis Alberto Baena-Lopez‎ et al.
  • Development (Cambridge, England)‎
  • 2018‎

The caspase-mediated regulation of many cellular processes, including apoptosis, justifies the substantial interest in understanding all of the biological features of these enzymes. To complement functional assays, it is crucial to identify caspase-activating cells in live tissues. Our work describes novel initiator caspase reporters that, for the first time, provide direct information concerning the initial steps of the caspase activation cascade in Drosophila tissues. One of our caspase sensors capitalises on the rapid subcellular localisation change of a fluorescent marker to uncover novel cellular apoptotic events relating to the actin-mediated positioning of the nucleus before cell delamination. The other construct benefits from caspase-induced nuclear translocation of a QF transcription factor. This feature enables the genetic manipulation of caspase-activating cells and reveals the spatiotemporal patterns of initiator caspase activity. Collectively, our sensors offer experimental opportunities not available by using previous reporters and have proven useful to illuminate previously unknown aspects of caspase-dependent processes in apoptotic and non-apoptotic cellular scenarios.


Epithelial cells release adenosine to promote local TNF production in response to polarity disruption.

  • Ingrid Poernbacher‎ et al.
  • Nature communications‎
  • 2018‎

Disruption of epithelial integrity contributes to chronic inflammatory disorders through persistent activation of stress signalling. Here we uncover a mechanism whereby disruption of apico-basal polarity promotes stress signalling. We show that depletion of Scribbled (Scrib), a baso-lateral determinant, causes epithelial cells to release adenosine through equilibrative channels into the extracellular space. Autocrine activation of the adenosine receptor leads to transcriptional upregulation of TNF, which in turn boosts the activity of JNK signalling. Thus, disruption of cell polarity feeds into a well-established stress pathway through the intermediary of an adenosine signalling branch. Although this regulatory input could help ensuring an effective response to acute polarity stress, we suggest that it becomes deleterious in situations of low-grade chronic disruption by provoking a private inflammatory-like TNF-driven response within the polarity-deficient epithelium.


Mechanical constraints to cell-cycle progression in a pseudostratified epithelium.

  • Sophie Hecht‎ et al.
  • Current biology : CB‎
  • 2022‎

As organs and tissues approach their normal size during development or regeneration, growth slows down, and cell proliferation progressively comes to a halt. Among the various processes suggested to contribute to growth termination,1-10 mechanical feedback, perhaps via adherens junctions, has been suggested to play a role.11-14 However, since adherens junctions are only present in a narrow plane of the subapical region, other structures are likely needed to sense mechanical stresses along the apical-basal (A-B) axis, especially in a thick pseudostratified epithelium. This could be achieved by nuclei, which have been implicated in mechanotransduction in tissue culture.15 In addition, mechanical constraints imposed by nuclear crowding and spatial confinement could affect interkinetic nuclear migration (IKNM),16 which allows G2 nuclei to reach the apical surface, where they normally undergo mitosis.17-25 To explore how mechanical constraints affect IKNM, we devised an individual-based model that treats nuclei as deformable objects constrained by the cell cortex and the presence of other nuclei. The model predicts changes in the proportion of cell-cycle phases during growth, which we validate with the cell-cycle phase reporter FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator).26 However, this model does not preclude indefinite growth, leading us to postulate that nuclei must migrate basally to access a putative basal signal required for S phase entry. With this refinement, our updated model accounts for the observed progressive slowing down of growth and explains how pseudostratified epithelia reach a stereotypical thickness upon completion of growth.


Notum deacylates Wnt proteins to suppress signalling activity.

  • Satoshi Kakugawa‎ et al.
  • Nature‎
  • 2015‎

Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.


Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes.

  • Karen Beckett‎ et al.
  • Traffic (Copenhagen, Denmark)‎
  • 2013‎

Wingless acts as a morphogen in Drosophila wing discs, where it specifies cell fates and controls growth several cell diameters away from its site of expression. Thus, despite being acylated and membrane associated, Wingless spreads in the extracellular space. Recent studies have focussed on identifying the route that Wingless follows in the secretory pathway and determining how it is packaged for release. We have found that, in medium conditioned by Wingless-expressing Drosophila S2 cells, Wingless is present on exosome-like vesicles and that this fraction activates signal transduction. Proteomic analysis shows that Wingless-containing exosome-like structures contain many Drosophila proteins that are homologous to mammalian exosome proteins. In addition, Evi, a multipass transmembrane protein, is also present on exosome-like vesicles. Using these exosome markers and a cell-based RNAi assay, we found that the small GTPase Rab11 contributes significantly to exosome production. This finding allows us to conclude from in vivo Rab11 knockdown experiments, that exosomes are unlikely to contribute to Wingless secretion and gradient formation in wing discs. Consistent with this conclusion, extracellularly tagged Evi expressed from a Bacterial Artificial Chromosome is not released from imaginal disc Wingless-expressing cells.


Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex.

  • Xavier Franch-Marro‎ et al.
  • Nature cell biology‎
  • 2008‎

The glycolipoproteins of the Wnt family raise interesting trafficking issues, especially with respect to spreading within tissues. Recently, the retromer complex has been suggested to participate in packaging Wnts into long-range transport vehicles. Our analysis of a Drosophila mutant in Vps35 show that, instead, the retromer complex is required for efficient progression of Wingless (a Drosophila Wnt) through the secretory pathway. Indeed expression of senseless, a short-range target gene, is lost in Vps35-deficient imaginal discs. In contrast, Vps35 is not required for Hedgehog secretion, suggesting specificity. Overexpression of Wntless, a transmembrane protein known to be specifically required for Wingless secretion overcomes the secretion block of Vps35-mutant cells. Furthermore, biochemical evidence confirms that Wntless engages with the retromer complex. We propose that Wntless accompanies Wingless to the plasma membrane where the two proteins dissociate. Following dissociation from Wingless, Wntless is internalized and returns to the Golgi apparatus in a retromer-dependent manner. Without the retromer-dependent recycling route, Wingless secretion is impaired and, as electron microscopy suggests, Wntless is diverted to a degradative compartment.


Dpp controls growth and patterning in Drosophila wing precursors through distinct modes of action.

  • Pablo Sanchez Bosch‎ et al.
  • eLife‎
  • 2017‎

Dpp, a member of the BMP family, is a morphogen that specifies positional information in Drosophila wing precursors. In this tissue, Dpp expressed along the anterior-posterior boundary forms a concentration gradient that controls the expression domains of target genes, which in turn specify the position of wing veins. Dpp also promotes growth in this tissue. The relationship between the spatio-temporal profile of Dpp signalling and growth has been the subject of debate, which has intensified recently with the suggestion that the stripe of Dpp is dispensable for growth. With two independent conditional alleles of dpp, we find that the stripe of Dpp is essential for wing growth. We then show that this requirement, but not patterning, can be fulfilled by uniform, low level, Dpp expression. Thus, the stripe of Dpp ensures that signalling remains above a pro-growth threshold, while at the same time generating a gradient that patterns cell fates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: