Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Characterization of bovine FUT7 furthers understanding of FUT7 evolution in mammals.

  • Benoît Laporte‎ et al.
  • BMC genetics‎
  • 2012‎

The Sialyl-Lewis X (Slex) is a well-known glycan structure involved in leukocyte homing and recruitment to inflammatory sites. SLex is well conserved among species and is mainly synthesized by FucT-VII in vertebrates. The enzyme responsible for its biosynthesis in cattle was not known.


Circulating PCSK9 levels are not associated with the severity of hepatic steatosis and NASH in a high-risk population.

  • Matthieu Wargny‎ et al.
  • Atherosclerosis‎
  • 2018‎

Some studies suggested that proprotein convertase subtilisin kexin type 9 (PCSK9) is linked to liver steatosis severity and non-alcoholic steatohepatitis (NASH). We aimed to assess whether circulating PCSK9 levels are associated with either liver fat content (LFC) or histological markers of NASH in high-risk patients.


Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.

  • Anne Harduin-Lepers‎ et al.
  • BMC evolutionary biology‎
  • 2008‎

The animal sialyltransferases, which catalyze the transfer of sialic acid to the glycan moiety of glycoconjugates, are subdivided into four families: ST3Gal, ST6Gal, ST6GalNAc and ST8Sia, based on acceptor sugar specificity and glycosidic linkage formed. Despite low overall sequence identity between each sialyltransferase family, all sialyltransferases share four conserved peptide motifs (L, S, III and VS) that serve as hallmarks for the identification of the sialyltransferases. Currently, twenty subfamilies have been described in mammals and birds. Examples of the four sialyltransferase families have also been found in invertebrates. Focusing on the ST8Sia family, we investigated the origin of the three groups of alpha2,8-sialyltransferases demonstrated in vertebrates to carry out poly-, oligo- and mono-alpha2,8-sialylation.


Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes.

  • Josefine Tratwal‎ et al.
  • Frontiers in endocrinology‎
  • 2022‎

Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which develop earlier in life and are more resilient to environmental and metabolic disruptions. In vivo, rBMAds are enriched in saturated fatty acids, contain smaller lipid droplets (LDs) and more readily provide hematopoietic support than their cBMAd counterparts. Mouse models have been used for BMAds research, but isolation of primary BMAds presents many challenges, and thus in vitro models remain the current standard to study nuances of adipocyte differentiation. No in vitro model has yet been described for the study of rBMAds/cBMAds. Here, we present an in vitro model of BM adipogenesis with differential rBMAd and cBMAd-like characteristics. We used OP9 BM stromal cells derived from a (C57BL/6xC3H)F2-op/op mouse, which have been extensively characterized as feeder layer for hematopoiesis research. We observed similar canonical adipogenesis transcriptional signatures for spontaneously-differentiated (sOP9) and induced (iOP9) cultures, while fatty acid composition and desaturase expression of Scd1 and Fads2 differed at the population level. To resolve differences at the single adipocyte level we tested Raman microspectroscopy and show it constitutes a high-resolution method for studying adipogenesis in vitro in a label-free manner, with resolution to individual LDs. We found sOP9 adipocytes have lower unsaturation ratios, smaller LDs and higher hematopoietic support than iOP9 adipocytes, thus functionally resembling rBMAds, while iOP9 more closely resembled cBMAds. Validation in human primary samples confirmed a higher unsaturation ratio for lipids extracted from stable cBMAd-rich sites (femoral head upon hip-replacement surgery) versus labile rBMAds (iliac crest after chemotherapy). As a result, the 16:1/16:0 fatty acid unsaturation ratio, which was already shown to discriminate BMAd subtypes in rabbit and rat marrow, was validated to discriminate cBMAds from rBMAd in both the OP9 model in vitro system and in human samples. We expect our model will be useful for cBMAd and rBMAd studies, particularly where isolation of primary BMAds is a limiting step.


Personality types in individuals with type 1 and type 2 diabetes.

  • Alexia Rouland‎ et al.
  • Endocrine connections‎
  • 2020‎

The Type A personality, characterized by impatience, strong career ambition and competitiveness, is associated with greater sensitivity to external stress. Type 1 diabetes (T1D) is an auto-immune disease, which is potentially influenced by stress, unlike type 2 diabetes (T2D). The aim of this study was to assess whether individuals with T1D and T2D exhibited significant differences on the Type A personality scale. We also assessed the personality in patients with thyroid auto-immune diseases to validate potential links between auto-immune disease and Type A.


Multiplex coherent anti-Stokes Raman scattering highlights state of chromatin condensation in CH region.

  • Tiffany Guerenne-Del Ben‎ et al.
  • Scientific reports‎
  • 2019‎

Coherent Raman microscopy has become a powerful tool in label-free, non-destructive and fast cell imaging. Here we apply high spectral resolution multiplex coherent anti-Stokes Raman scattering (MCARS) microspectroscopy in the high wavenumber region to the study of the cell cycle. We show that heterochromatin - the condensed state of chromatin - can be visualised by means of the vibrational signature of proteins taking part in its condensation. Thus, we are able to identify chromosomes and their movement during mitosis, as well as structures like nucleoli and nuclear border in interphase. Furthermore, the specific organization of the endoplasmic reticulum during mitosis is highlighted. Finally, we stress that MCARS can reveal the biochemical impact of the fixative method at the cellular level. Beyond the study of the cell cycle, this work introduces a label-free imaging approach that enables the visualization of cellular processes where chromatin undergoes rearrangements.


Profiling of lipid mediators in atherosclerotic carotid plaques from type 2 diabetic and non-diabetic patients.

  • Louise Ménégaut‎ et al.
  • Prostaglandins, leukotrienes, and essential fatty acids‎
  • 2022‎

Diabetes is associated with an accelerated development of atherosclerosis. Specific mechanisms related to diabetes and hyperglycemia may play a role in this process. In particular, alterations of arachidonic acid (AA) metabolism have been reported. Our main goal was to investigate for differences in the concentration of LTB4 and RvD1 as well as selected cyclooxygenase-derived mediators in carotid plaques from diabetic and non-diabetic patients. We also aimed to analyze the relationship between omega 6 and omega 3 Poly-Unsaturated Fatty acids (PUFAs) content in the plaques and the concentrations of these lipid mediators.


Coherent anti-Stokes Raman scattering cell imaging and segmentation with unsupervised data analysis.

  • Damien Boildieu‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2022‎

Coherent Raman imaging has been extensively applied to live-cell imaging in the last 2 decades, allowing to probe the intracellular lipid, protein, nucleic acid, and water content with a high-acquisition rate and sensitivity. In this context, multiplex coherent anti-Stokes Raman scattering (MCARS) microspectroscopy using sub-nanosecond laser pulses is now recognized as a mature and straightforward technology for label-free bioimaging, offering the high spectral resolution of conventional Raman spectroscopy with reduced acquisition time. Here, we introduce the combination of the MCARS imaging technique with unsupervised data analysis based on multivariate curve resolution (MCR). The MCR process is implemented under the classical signal non-negativity constraint and, even more originally, under a new spatial constraint based on cell segmentation. We thus introduce a new methodology for hyperspectral cell imaging and segmentation, based on a simple, unsupervised workflow without any spectrum-to-spectrum phase retrieval computation. We first assess the robustness of our approach by considering cells of different types, namely, from the human HEK293 and murine C2C12 lines. To evaluate its applicability over a broader range, we then study HEK293 cells in different physiological states and experimental situations. Specifically, we compare an interphasic cell with a mitotic (prophase) one. We also present a comparison between a fixed cell and a living cell, in order to visualize the potential changes induced by the fixation protocol in cellular architecture. Next, with the aim of assessing more precisely the sensitivity of our approach, we study HEK293 living cells overexpressing tropomyosin-related kinase B (TrkB), a cancer-related membrane receptor, depending on the presence of its ligand, brain-derived neurotrophic factor (BDNF). Finally, the segmentation capability of the approach is evaluated in the case of a single cell and also by considering cell clusters of various sizes.


Lichen Polyphenolic Compounds for the Eradication of Candida albicans Biofilms.

  • Marion Girardot‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Lichens, due to their symbiotic nature (association between fungi and algae), constitute a chemical factory of original compounds. Polyphenolic compounds (depsides and depsidones) are the main constituents of lichens and are exclusively biosynthesized by these organisms. A panel of 11 polyphenols was evaluated for their anti-biofilm activity against Candida albicans biofilms on the maturation phase (anti-maturation) (MMIC50) as well as on preformed 24-h-old biofilm (anti-biofilm) (MBIC50) using the XTT assay. Minimum inhibitory concentrations of compounds (MICs) against C. albicans planktonic yeast were also determined using a broth microdilution method. While none of the tested compounds were active against planktonic cells (IC50 > 100 µg/ml), three depsides slowed the biofilm maturation (MMIC50 ≤12.5 µg/ml after 48 h of contact with Candida cells). Evernic acid was able to both slow the maturation and reduce the already formed biofilms with MBIC50 ≤12.5 µg/ml after 48 h of contact with the biofilm. This compound shows a weak toxicity against HeLa cells (22%) at the minimal active concentration and no hemolytic activity at 100 µg/ml. Microscopic observations of evernic acid and optimization of its solubility were performed to further study this compound. This work confirmed the anti-biofilm potential of depsides, especially evernic acid, and allows to establish the structure-activity relationships to better explain the anti-biofilm potential of these compounds.


Involvement of ST6Gal I-mediated α2,6 sialylation in myoblast proliferation and differentiation.

  • Caroline Vergé‎ et al.
  • FEBS open bio‎
  • 2020‎

Myogenesis is a physiological process which involves the proliferation of myoblasts and their differentiation into multinucleated myotubes, which constitute the future muscle fibers. Commitment of myoblasts to differentiation is regulated by the balance between the myogenic factors Pax7 and MyoD. The formation of myotubes requires the presence of glycans, especially N-glycans, on the cell surface. We examined here the involvement of α2,6 sialylation during murine myoblastic C2C12 cell differentiation by generating a st6gal1-knockdown C2C12 cell line; these cells exhibit reduced proliferative potential and precocious differentiation due to the low expression of Pax7. The earlier fusion of st6gal1-knockdown cells leads to a high fusion index and a drop in reserve cells (Pax7+ /MyoD- ). In st6gal1-knockdown cells, the Notch pathway is inactivated; consequently, Pax7 expression is virtually abolished, leading to impairment of the proliferation rate. All these results indicate that the decrease in α2,6 sialylation of N-glycans favors the differentiation of most cells and provokes a significant loss of reserve cells.


Synthesis and Investigation of Flavanone Derivatives as Potential New Anti-Inflammatory Agents.

  • Cynthia Sinyeue‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Flavonoids are polyphenols with broad known pharmacological properties. A series of 2,3-dihydroflavanone derivatives were thus synthesized and investigated for their anti-inflammatory activities. The target flavanones were prepared through cyclization of 2'-hydroxychalcone derivatives, the later obtained by Claisen-Schmidt condensation. Since nitric oxide (NO) represents an important inflammatory mediator, the effects of various flavanones on the NO production in the LPS-induced RAW 264.7 macrophage were assessed in vitro using the Griess test. The most active compounds were flavanone (4G), 2'-carboxy-5,7-dimethoxy-flavanone (4F), 4'-bromo-5,7-dimethoxy-flavanone (4D), and 2'-carboxyflavanone (4J), with IC50 values of 0.603, 0.906, 1.030, and 1.830 µg/mL, respectively. In comparison, pinocembrin achieved an IC50 value of 203.60 µg/mL. Thus, the derivatives synthesized in this work had a higher NO inhibition capacity compared to pinocembrin, demonstrating the importance of pharmacomodulation to improve the biological potential of natural molecules. SARs suggested that the use of a carboxyl-group in the meta-position of the B-ring increases biological activity, whereas compounds carrying halogen substituents in the para-position were less active. The addition of methoxy-groups in the meta-position of the A-ring somewhat decreased the activity. This study successfully identified new bioactive flavanones as promising candidates for the development of new anti-inflammatory agents.


Photophysical and Bactericidal Properties of Pyridinium and Imidazolium Porphyrins for Photodynamic Antimicrobial Chemotherapy.

  • Florent Le Guern‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Despite advances achieved over the last decade, infections caused by multi-drug-resistant bacterial strains are increasingly becoming important societal issues that need to be addressed. New approaches have already been developed in order to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide an alternative to fight infectious bacteria. Many studies have highlighted the value of cationic photosensitizers in order to improve this approach. This study reports the synthesis and the characterization of cationic porphyrins derived from methylimidazolium and phenylimidazolium porphyrins, along with a comparison of their photophysical properties with the well-known N-methylpyridyl (pyridinium) porphyrin family. PACT tests conducted with the tetracationic porphyrins of these three families showed that these new photosensitizers may offer a good alternative to the classical pyridinium porphyrins, especially against S.aureus and E.coli. In addition, they pave the way to new cationic photosensitizers by the means of derivatization through amide bond formation.


Plasma ceramides are associated with MRI-based liver fat content but not with noninvasive scores of liver fibrosis in patients with type 2 diabetes.

  • Damien Denimal‎ et al.
  • Cardiovascular diabetology‎
  • 2023‎

There is growing evidence that ceramides play a significant role in the onset and progression of non-alcoholic fatty liver disease (NAFLD), a highly prevalent condition in patients with type 2 diabetes associated with hepatic and cardiovascular events. However, the relationship between plasma ceramide levels and NAFLD severity in type 2 diabetes remains unclear. The main purpose of the present study was to investigate whether circulating levels of ceramides in patients with type 2 diabetes are associated with liver steatosis assessed by the highly accurate magnetic resonance imaging proton density fat fraction (MRI-PDFF). The secondary objective was to assess the relationship between plasma ceramides and noninvasive scores of liver fibrosis.


Synthesis and Properties of BODIPY Appended Tetraphenylethylene Scaffolds as Photoactive Arrays.

  • Harry C Sample‎ et al.
  • European journal of organic chemistry‎
  • 2021‎

Tetraphenylethylene (TPE) and its derivatives exhibit excellent aggregation-induced emission (AIE) properties. The TPE unit is easily accessible, and many functional groups can be introduced in a facile manner to yield effective luminescent materials in both solution and the solid-state. It is because of this, several TPE-based compounds have been developed and applied in many areas, such as OLEDs and chemical sensors. Boron dipyrromethenes (BODIPYs) are a class of pyrrolic fluorophore of great interest with myriad application in both material science and biomedical applications. Through the combination of Pd-catalyzed cross-coupling reactions and traditional dipyrromethene chemistry, we present the syntheses of novel tetra-BODIPY-appended TPE derivatives with different distances between the TPE and BODIPY cores. The TPE-BODIPY arrays 6 and 9 show vastly differing AIE properties in THF/H2O systems, with 9 exhibiting dual-AIE, along with both conjugates being found to produce singlet oxygen (1O2). We presume the synthesized BODIPY-appended TPE scaffolds to be utilized for potential applications in the fields of light-emitting systems and theranostics.


Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer.

  • Ludovic Bretin‎ et al.
  • Cancers‎
  • 2019‎

Photodynamic therapy (PDT) using porphyrins has been approved for treatment of several solid tumors due to the generation of cytotoxic reactive oxygen species (ROS). However, low physiological solubility and lack of selectivity towards tumor sites are the main limitations of their clinical use. Nanoparticles are able to spontaneously accumulate in solid tumors through an enhanced permeability and retention (EPR) effect due to leaky vasculature, poor lymphatic drainage, and increased vessel permeability. Herein, we proved the added value of nanoparticle vectorization on anticancer efficacy and tumor-targeting by 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (TPPOH). Using 80 nm silica nanoparticles (SNPs) coated with xylan-TPPOH conjugate (TPPOH-X), we first showed very significant phototoxic effects of TPPOH-X SNPs mediated by post-PDT ROS generation and stronger cell uptake in human colorectal cancer cell lines compared to free TPPOH. Additionally, we demonstrated apoptotic cell death induced by TPPOH-X SNPs-PDT and the interest of autophagy inhibition to increase anticancer efficacy. Finally, we highlighted in vivo, without toxicity, elevated anticancer efficacy of TPPOH-X SNPs through improvement of tumor-targeting compared to a free TPPOH protocol. Our work demonstrated for the first time the strong anticancer efficacy of TPPOH in vitro and in vivo and the merit of SNPs vectorization.


New Phenalenone Derivatives: Synthesis and Evaluation of Their Singlet Oxygen Quantum Yield.

  • Jérémy Godard‎ et al.
  • ACS omega‎
  • 2020‎

1H-Phenalen-1-one is a very efficient and easy-to-synthesize photosensitizer. Many substitutions have been previously described, but most of them significantly reduce the singlet oxygen quantum yield. The chloromethyl derivative described elsewhere is a good starting point for the synthesis of many useful derivatives because of the methylene bridge that saves its unique photosensitizing properties. Eighteen new phenalenone derivatives have been synthesized, bearing amine, carboxylic acid, alcohol, azide, and other major functional groups in organic chemistry. These reactions were carried out in good-to-excellent yields, and most of these new compounds retained the singlet oxygen quantum yield of the parent molecule. These new derivatives are very promising precursors for a number of applications such as the development of photosensitive antimicrobial agents or materials.


UDP-GLYCOSYLTRANSFERASE 72E3 Plays a Role in Lignification of Secondary Cell Walls in Arabidopsis.

  • Fabien Baldacci-Cresp‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.


Encapsulation of a Ru(II) Polypyridyl Complex into Polylactide Nanoparticles for Antimicrobial Photodynamic Therapy.

  • Nancy Soliman‎ et al.
  • Pharmaceutics‎
  • 2020‎

Antimicrobial photodynamic therapy (aPDT) also known as photodynamic inactivation (PDI) is a promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria. This therapy relies on the use of a molecule called photosensitizer capable of generating, from molecular oxygen, reactive oxygen species including singlet oxygen under light irradiation to induce bacteria inactivation. Ru(II) polypyridyl complexes can be considered as potential photosensitizers for aPDT/PDI. However, to allow efficient treatment, they must be able to penetrate bacteria. This can be promoted by using nanoparticles. In this work, ruthenium-polylactide (RuPLA) nanoconjugates with different tacticities and molecular weights were prepared from a Ru(II) polypyridyl complex, RuOH. Narrowly-dispersed nanoparticles with high ruthenium loadings (up to 53%) and an intensity-average diameter < 300 nm were obtained by nanoprecipitation, as characterized by dynamic light scattering (DLS). Their phototoxicity effect was evaluated on four bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) and compared to the parent compound RuOH. RuOH and the nanoparticles were found to be non-active towards Gram-negative bacterial strains. However, depending on the tacticity and molecular weight of the RuPLA nanoconjugates, differences in photobactericidal activity on Gram-positive bacterial strains have been evidenced whereas RuOH remained non active.


Development of Phenalenone-Triazolium Salt Derivatives for aPDT: Synthesis and Antibacterial Screening.

  • Jérémy Godard‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2021‎

The increasing number of hospital-acquired infections demand the development of innovative antimicrobial treatments. Antimicrobial photodynamic therapy (aPDT) is a versatile technique which relies on the production of reactive oxygen species (ROS) generated by light-irradiated photosensitizers (PS) in the presence of oxygen (O2). 1H-Phenalen-1-one is a very efficient photosensitizer known for its high singlet oxygen quantum yield and its antimicrobial potential in aPDT when covalently bound to quaternary ammonium groups. Triazolium salts are stable aromatic quaternary ammonium salts that recently appeared as interesting moieties endowed with antimicrobial activities. The coupling between phenalenone and triazolium groups bearing various substituents was realized by copper-catalyzed azide-alkyne cycloaddition followed by alkylation with methyl iodide or 2-(bromomethyl)-1H-phenalen-1-one. As expected, most of the compounds retained the initial singlet oxygen quantum yield, close to unity. Minimum inhibitory concentrations (MIC) of 14 new phenalenone-triazolium salt derivatives and 2 phenalenone-triazole derivatives were determined against 6 bacterial strains (Gram-negatives and Gram-positives species). Most of these PS showed significant photoinactivation activities, the strongest effects being observed against Gram-positive strains with as low as submicromolar MIC values.


Chemical Composition, Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of the Plant Lebanese Crataegus Azarolus L.

  • Hany Kallassy‎ et al.
  • Medical science monitor basic research‎
  • 2017‎

BACKGROUND In the present study, phytochemical screening, antioxidant, anti-inflammatory, and antiproliferative capacities of 3 extracts from leaves of Lebanese Crataegus azarolus L. were evaluated. MATERIAL AND METHODS Fresh leaves were dissolved in 3 different solvents: distilled water, ethanol, and methanol. The chemical composition was determined using high-performance liquid chromatography (HPLC) and the content of essential oil of this plant was examined by gas chromatography (GC) coupled with mass spectrometry (MS). The antioxidant potential was evaluated using DPPH radical scavenging and Fe2+ chelating activity assays. Anti-inflammatory effect was investigated by measuring the secreted amounts of the proinflammatory mediator PGE2 using ELISA technique, as well as by assaying the mRNA levels of the proinflammatory cytokines (IL-α, IL-β, and Il-6), chemokines (CCL3 and CCL4) and inflammation-sensitive COX2 and iNOS enzymes using quantitative real-time PCR (qRT-PCR). The antiproliferative effect was evaluated using the XTT viability assay. RESULTS The obtained results show that alcohol (methanol and ethanol) extracts were rich in bioactive molecules with medical relevance and exerted substantial antioxidant, anti-inflammatory, and antiproliferative capacities. On the other hand, aqueous extract contained fewer chemical components and exhibited less therapeutic efficiency. CONCLUSIONS Our observations indicate that Crataegus azarolus L. could be used for treating diseases related to oxidative stress, inflammatory reactions, and uncontrolled cell growth.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: