Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease.

  • Deborah L Harrington‎ et al.
  • Brain and behavior‎
  • 2014‎

The brain mechanisms of cognitive impairment in prodromal Huntington disease (prHD) are not well understood. Although striatal atrophy correlates with some cognitive abilities, few studies of prHD have investigated whether cortical gray matter morphometry correlates in a regionally specific manner with functioning in different cognitive domains. This knowledge would inform the selection of cognitive measures for clinical trials that would be most sensitive to the target of a treatment intervention.


Disruption of response inhibition circuits in prodromal Huntington disease.

  • Julia A Rao‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2014‎

Cognitive changes in the prodromal phase of Huntington disease (prHD) are found in multiple domains, yet their neural bases are not well understood. One component process that supports cognition is inhibitory control. In the present fMRI study, we examined brain circuits involved in response inhibition in 65 prHD participants and 36 gene-negative (NEG) controls using the stop signal task (SST). PrHD participants were subdivided into three groups (LOW, MEDIUM, HIGH) based on their CAG-Age Product (CAP) score, an index of genetic exposure and a proxy for expected time to diagnosis. Poorer response inhibition (stop signal duration) correlated with CAP scores. When response inhibition was successful, activation of the classic frontal inhibitory-network was normal in prHD, yet stepwise reductions in activation with proximity to diagnosis were found in the posterior ventral attention network (inferior parietal and temporal cortices). Failures in response inhibition in prHD were related to changes in inhibition centers (supplementary motor area (SMA)/anterior cingulate and inferior frontal cortex/insula) and ventral attention networks, where activation decreased with proximity to diagnosis. The LOW group showed evidence of early compensatory activation (hyperactivation) of right-hemisphere inhibition and attention reorienting centers, despite an absence of cortical atrophy or deficits on tests of executive functioning. Moreover, greater activation for failed than successful inhibitions in an ipsilateral motor-control network was found in the control group, whereas such differences were markedly attenuated in all prHD groups. The results were not related to changes in cortical volume and thickness, which did not differ among the groups. However, greater hypoactivation of classic right-hemisphere inhibition centers [inferior frontal gyrus (IFG)/insula, SMA/anterior cingulate cortex (ACC)] during inhibition failures correlated with greater globus pallidus atrophy. These results are the first to demonstrate that response inhibition in prHD is associated with altered functioning in brain networks that govern inhibition, attention, and motor control.


Prefrontal cortex white matter tracts in prodromal Huntington disease.

  • Joy T Matsui‎ et al.
  • Human brain mapping‎
  • 2015‎

Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.


Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease.

  • Peter A Wijeratne‎ et al.
  • Annals of neurology‎
  • 2020‎

The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD.


Genetic modifiers of Huntington disease differentially influence motor and cognitive domains.

  • Jong-Min Lee‎ et al.
  • American journal of human genetics‎
  • 2022‎

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Genetic Modification of Huntington Disease Acts Early in the Prediagnosis Phase.

  • Jeffrey D Long‎ et al.
  • American journal of human genetics‎
  • 2018‎

Age at onset of Huntington disease, an inherited neurodegenerative disorder, is influenced by the size of the disease-causing CAG trinucleotide repeat expansion in HTT and by genetic modifier loci on chromosomes 8 and 15. Stratifying by modifier genotype, we have examined putamen volume, total motor score (TMS), and symbol digit modalities test (SDMT) scores, both at study entry and longitudinally, in normal controls and CAG-expansion carriers who were enrolled prior to the emergence of manifest HD in the PREDICT-HD study. The modifiers, which included onset-hastening and onset-delaying alleles on chromosome 15 and an onset-hastening allele on chromosome 8, revealed no major effect in controls but distinct patterns of modification in prediagnosis HD subjects. Putamen volume at study entry showed evidence of reciprocal modification by the chromosome 15 alleles, but the rate of loss of putamen volume was modified only by the deleterious chromosome 15 allele. By contrast, both alleles modified the rate of change of the SDMT score, but neither had an effect on the TMS. The influence of the chromosome 8 modifier was evident only in the rate of TMS increase. The data indicate that (1) modification of pathogenesis can occur early in the prediagnosis phase, (2) the modifier loci act in genetic interaction with the HD mutation rather than through independent additive effects, and (3) HD subclinical phenotypes are differentially influenced by each modifier, implying distinct effects in different cells or tissues. Together, these findings indicate the potential benefit of using genetic modifier strategies for dissecting the prediagnosis pathogenic process in HD.


Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease.

  • Peter A Wijeratne‎ et al.
  • Neurology. Genetics‎
  • 2021‎

Longitudinal measurements of brain atrophy using structural MRI (sMRI) can provide powerful markers for tracking disease progression in neurodegenerative diseases. In this study, we use a disease progression model to learn individual-level disease times and hence reveal a new timeline of sMRI changes in Huntington disease (HD).


MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study.

  • Eric R Reed‎ et al.
  • Neurology‎
  • 2018‎

To investigate the feasibility of microRNA (miRNA) levels in CSF as biomarkers for prodromal Huntington disease (HD).


Patterns of Co-Occurring Gray Matter Concentration Loss across the Huntington Disease Prodrome.

  • Jennifer Ashley Ciarochi‎ et al.
  • Frontiers in neurology‎
  • 2016‎

Huntington disease (HD) is caused by an abnormally expanded cytosine-adenine-guanine (CAG) trinucleotide repeat in the HTT gene. Age and CAG-expansion number are related to age at diagnosis and can be used to index disease progression. However, observed onset-age variability suggests that other factors also modulate progression. Indexing prodromal (pre-diagnosis) progression may highlight therapeutic targets by isolating the earliest-affected factors. We present the largest prodromal HD application of the univariate method voxel-based morphometry (VBM) and the first application of the multivariate method source-based morphometry (SBM) to, respectively, compare gray matter concentration (GMC) and capture co-occurring GMC patterns in control and prodromal participants. Using structural MRI data from 1050 (831 prodromal, 219 control) participants, we characterize control-prodromal, whole-brain GMC differences at various prodromal stages. Our results provide evidence for (1) regional co-occurrence and differential patterns of decline across the prodrome, with parietal and occipital differences commonly co-occurring, and frontal and temporal differences being relatively independent from one another, (2) fronto-striatal circuits being among the earliest and most consistently affected in the prodrome, (3) delayed degradation in some movement-related regions, with increasing subcortical and occipital differences with later progression, (4) an overall superior-to-inferior gradient of GMC reduction in frontal, parietal, and temporal lobes, and (5) the appropriateness of SBM for studying the prodromal HD population and its enhanced sensitivity to early prodromal and regionally concurrent differences.


Early changes in the hypothalamic region in prodromal Huntington disease revealed by MRI analysis.

  • Charlotte Soneson‎ et al.
  • Neurobiology of disease‎
  • 2010‎

Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat. Its length can be used to estimate the time of clinical diagnosis, which is defined by overt motor symptoms. Non-motor symptoms begin before motor onset, and involve changes in hypothalamus-regulated functions such as sleep, emotion and metabolism. Therefore we hypothesized that hypothalamic changes occur already prior to the clinical diagnosis. We performed voxel-based morphometry and logistic regression analyses of cross-sectional MR images from 220 HD gene carriers and 75 controls in the Predict-HD study. We show that changes in the hypothalamic region are detectable before clinical diagnosis and that its grey matter contents alone are sufficient to distinguish HD gene carriers from control cases. In conclusion, our study shows, for the first time, that alterations in grey matter contents in the hypothalamic region occur at least a decade before clinical diagnosis in HD using MRI.


Association between Age and Striatal Volume Stratified by CAG Repeat Length in Prodromal Huntington Disease.

  • Elizabeth Aylward‎ et al.
  • PLoS currents‎
  • 2011‎

Longer CAG repeat length is associated with faster clinical progression in Huntington disease, although the effect of higher repeat length on brain atrophy is not well documented.


Assessing behavioural manifestations prior to clinical diagnosis of huntington disease: "anger and irritability" and "obsessions and compulsions".

  • Anthony L Vaccarino‎ et al.
  • PLoS currents‎
  • 2011‎

The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess "Anger and Irritability" and "Obsessions and Compulsions" in prHD individuals.


A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study.

  • Jian-Liang Li‎ et al.
  • American journal of human genetics‎
  • 2003‎

Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21-23 (LOD=2.29), and 6q24-26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.


Clinical and Biomarker Changes in Premanifest Huntington Disease Show Trial Feasibility: A Decade of the PREDICT-HD Study.

  • Jane S Paulsen‎ et al.
  • Frontiers in aging neuroscience‎
  • 2014‎

There is growing consensus that intervention and treatment of Huntington disease (HD) should occur at the earliest stage possible. Various early-intervention methods for this fatal neurodegenerative disease have been identified, but preventive clinical trials for HD are limited by a lack of knowledge of the natural history of the disease and a dearth of appropriate outcome measures. Objectives of the current study are to document the natural history of premanifest HD progression in the largest cohort ever studied and to develop a battery of imaging and clinical markers of premanifest HD progression that can be used as outcome measures in preventive clinical trials. Neurobiological predictors of Huntington's disease is a 32-site, international, observational study of premanifest HD, with annual examination of 1013 participants with premanifest HD and 301 gene-expansion negative controls between 2001 and 2012. Findings document 39 variables representing imaging, motor, cognitive, functional, and psychiatric domains, showing different rates of decline between premanifest HD and controls. Required sample size and models of premanifest HD are presented to inform future design of clinical and preclinical research. Preventive clinical trials in premanifest HD with participants who have a medium or high probability of motor onset are calculated to be as resource-effective as those conducted in diagnosed HD and could interrupt disease 7-12 years earlier. Methods and measures for preventive clinical trials in premanifest HD more than a dozen years from motor onset are also feasible. These findings represent the most thorough documentation of a clinical battery for experimental therapeutics in stages of premanifest HD, the time period for which effective intervention may provide the most positive possible outcome for patients and their families affected by this devastating disease.


Genetics Modulate Gray Matter Variation Beyond Disease Burden in Prodromal Huntington's Disease.

  • Jingyu Liu‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Huntington's disease (HD) is a neurodegenerative disorder caused by an expansion mutation of the cytosine-adenine-guanine (CAG) trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715), we extracted gray matter (GM) components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age). Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels) with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B) in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.


Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset.

  • Branduff McAllister‎ et al.
  • Nature neuroscience‎
  • 2022‎

The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.


Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

  • Dan Wu‎ et al.
  • Human brain mapping‎
  • 2017‎

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc.


High and Low Levels of an NTRK2-Driven Genetic Profile Affect Motor- and Cognition-Associated Frontal Gray Matter in Prodromal Huntington's Disease.

  • Jennifer A Ciarochi‎ et al.
  • Brain sciences‎
  • 2018‎

This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntington's disease (HD). Parallel independent component analysis (pICA), a multivariate method for identifying correlated patterns in multimodal datasets, was applied to gray matter concentration (GMC) and genomic data from a sizeable PREDICT-HD prodromal cohort (N = 715). pICA identified a genetic component highlighting NTRK2, which encodes BDNF's TrkB receptor, that correlated with a GMC component including supplementary motor, precentral/premotor cortex, and other frontal areas (p < 0.001); this association appeared to be driven by participants with high or low levels of the genetic profile. The frontal GMC profile correlated with cognitive and motor variables (Trail Making Test A (p = 0.03); Stroop Color (p = 0.017); Stroop Interference (p = 0.04); Symbol Digit Modalities Test (p = 0.031); Total Motor Score (p = 0.01)). A top-weighted NTRK2 variant (rs2277193) was protectively associated with Trail Making Test B (p = 0.007); greater minor allele numbers were linked to a better performance. These results support the idea of a protective role of NTRK2 in prodromal HD, particularly in individuals with certain genotypes, and suggest that this gene may influence the preservation of frontal gray matter that is important for clinical functioning.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: