Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 995 papers

Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature‎
  • 2016‎

Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.


Analysis of genetic admixture in Uyghur using the 26 Y-STR loci system.

  • Yingnan Bian‎ et al.
  • Scientific reports‎
  • 2016‎

The Uyghur population has experienced extensive interaction with European and Eastern Asian populations historically. A set of high-resolution genetic markers could be useful to infer the genetic relationships between the Uyghur population and European and Asian populations. In this study we typed 100 unrelated Uyghur males living in southern Xinjiang at 26 Y-STR loci. Using the high-resolution 26 Y-STR loci system, we investigated genetic and phylogenetic relationship between the Uyghur population and 23 reference European or Asian populations. We found that the Uyghur population exhibited a genetic admixture of Eastern Asian and European populations, and had a slightly closer relationship with the selected European populations than the Eastern Asian populations. We also demonstrated that the 26 Y-STR loci system was potentially useful in forensic sciences because it has a large power of discrimination and rarely exhibits common haplotypes. However, ancestry inference of Uyghur samples could be challenging due to the admixed nature of the population.


Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells.

  • Juan-Hua Quan‎ et al.
  • PloS one‎
  • 2015‎

Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.


Pharmacokinetics, intestinal absorption and microbial metabolism of single platycodin D in comparison to Platycodi radix extract.

  • Jinjun Shan‎ et al.
  • Pharmacognosy magazine‎
  • 2015‎

Platycodi radix, the dried root of Platycodon grandiflorum A. DC, has been widely used as food and herb medicine for treating cough, cold and other respiratory ailments, and platycodin D (PD) is one of the most important compounds in Platycodi Radix.


Incidence and clinical features of paediatric vasculitis in Eastern China: 14-year retrospective study, 1999-2013.

  • Youying Mao‎ et al.
  • The Journal of international medical research‎
  • 2016‎

To determine the incidence and clinical features of paediatric primary vasculitis in patients from one centre in Eastern China.


Fibroblast growth factor receptor 1 promotes MG63 cell proliferation and is associated with increased expression of cyclin-dependent kinase 1 in osteosarcoma.

  • Wei Zhou‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Osteosarcoma is the most common type of malignant bone tumor in adolescents and young adults. However, current understanding of osteosarcomagenesis remains limited. In the present study, the role of fibroblast growth factor receptor 1 (FGFR1) in human osteosarcoma cell proliferation was investigated, and the possible pathways that contribute to FGFR1‑mediated osteosarcoma cell proliferation were examined using microarray analysis. The expression of FGFR1 in osteosarcoma tissues was assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. The results demonstrated that FGFR1 was markedly increased in osteosarcoma tissues, and that the overexpression of FGFR1 in MG63 cells significantly promoted cell proliferation, as observed using the cell viability assay. In addition, FGFR1‑mediated cell proliferation was closely associated with cell cycle re‑distribution, as determined by microarray analysis. Western blotting identified that the expression of cyclin-dependent kinase 1 (CDK1) was correspondingly increased in response to the overexpression of FGFR1. These results indicated that FGFR1 contributes to cell proliferation in osteosarcoma MG63 cells, and FGFR1 mediated cell proliferation may be attributed to the regulation of the cell cycle regulator, CDK1. These findings provide evidence to support the potential use of molecule target therapy against FGFR1 as a promising strategy in osteosarcoma treatment and prevention.


Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling.

  • Haiying Li‎ et al.
  • The Journal of cell biology‎
  • 2015‎

Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosomal system is critical in its regulation. In this study we report that Notch recycling to the cell surface is dependent on the COMMD-CCDC22-CCDC93 (CCC) complex, a recently identified regulator of endosomal trafficking. Disruption in this system leads to intracellular accumulation of Notch2 and concomitant reduction in Notch signaling. Interestingly, among the 10 copper metabolism MURR1 domain containing (COMMD) family members that can associate with the CCC complex, only COMMD9 and its binding partner, COMMD5, have substantial effects on Notch. Furthermore, Commd9 deletion in mice leads to embryonic lethality and complex cardiovascular alterations that bear hallmarks of Notch deficiency. Altogether, these studies highlight that the CCC complex controls Notch activation by modulating its intracellular trafficking and demonstrate cargo-specific effects for members of the COMMD protein family.


Signaling mechanism for modulation by ATP of glycine receptors on rat retinal ganglion cells.

  • Ping-Ping Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

ATP modulates voltage- and ligand-gated channels in the CNS via the activation of ionotropic P2X and metabotropic P2Y receptors. While P2Y receptors are expressed in retinal neurons, the function of these receptors in the retina is largely unknown. Using whole-cell patch-clamp techniques in rat retinal slice preparations, we demonstrated that ATP suppressed glycine receptor-mediated currents of OFF type ganglion cells (OFF-GCs) dose-dependently, and the effect was in part mediated by P2Y1 and P2Y11, but not by P2X. The ATP effect was abolished by intracellular dialysis of a Gq/11 protein inhibitor and phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor, but not phosphatidylcholine (PC)-PLC inhibitor. The ATP effect was accompanied by an increase in [Ca(2+)]i through the IP3-sensitive pathway and was blocked by intracellular Ca(2+)-free solution. Furthermore, the ATP effect was eliminated in the presence of PKC inhibitors. Neither PKA nor PKG system was involved. These results suggest that the ATP-induced suppression may be mediated by a distinct Gq/11/PI-PLC/IP3/Ca(2+)/PKC signaling pathway, following the activation of P2Y1,11 and other P2Y subtypes. Consistently, ATP suppressed glycine receptor-mediated light-evoked inhibitory postsynaptic currents of OFF-GCs. These results suggest that ATP may modify the ON-to-OFF crossover inhibition, thus changing action potential patterns of OFF-GCs.


Genetic Diversity and Phenotypic Variation in an Introgression Line Population Derived from an Interspecific Cross between Oryza glaberrima and Oryza sativa.

  • Caijin Chen‎ et al.
  • PloS one‎
  • 2016‎

The introduction of closely related species genomic fragments is an effective way to enrich genetic diversity and creates new germplasms in crops. Here, we studied the genetic diversity of an introgression line (IL) population composed of 106 ILs derived from an interspecific tetra cross between O. glaberrima and O. sativa (RAM3/Jin23B//Jin23B///YuetaiB). The proportion of O. glaberrima genome (PGG) in the ILs ranged from 0.3% to 36.7%, with an average value of 12.32% which is close to the theoretically expected proportion. A total of 250 polymorphic alleles were amplified by 21 AFLP primer combinations with an average of 12 alleles per primer. Population structure analysis revealed that the IL population can be divided into four genetically distinct subpopulations. Both principal component analysis and neighbor-joining tree analysis showed that ILs with a higher PGG displayed greater genetic diversity. Canonical discriminant analysis identified six phenotypic traits (plant height, yield per plant, filled grain percentage, panicle length, panicle number and days to flowering) as the main discriminatory traits among the ILs and between the subpopulations and showed significant phenotypic distances between subpopulations. The effects of PGG on phenotypic traits in the ILs were estimated using a linear admixed model, which showed a significant positive effect on grain yield per plant (0.286±0.117), plant height (0.418 ± 0.132), panicle length (0.663 ± 0.107), and spikelet number per panicle (0.339 ± 0.128), and a significant negative effect on filled grain percentage (-0.267 ± 0.123) and days to flowering (-0.324 ± 0.075). We found that an intermediate range (10% - 20%) of PGG was more effective for producing ILs with favorable integrated agronomic traits. Our results confirm that construction of IL population carrying O. glaberrima genomic fragments could be an effective approach to increase the genetic diversity of O. sativa genome and an appropriate level of PGG could facilitate pyramiding more favorable genes for developing more adaptive and productive rice.


Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis.

  • Nianchun Shan‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Although there are advances in diagnostic, predictive, and therapeutic strategies, discovering protein biomarker for early detection is required for improving the survival rate of the patients with endometrial carcinoma. In this study, we identify proteins that are differentially expressed between the Stage I endometrial carcinoma and the normal pericarcinous tissues by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. Totally, we screened 1,266 proteins. Among them, 103 proteins were significantly overexpressed, and 30 were significantly downexpressed in endometrial carcinoma. Using the bioinformatics analysis, we identified a list of proteins that might be closely associated with endometrial carcinoma, including CCT7, HSPA8, PCBP2, LONP1, PFN1, and EEF2. We validated the gene overexpression of these molecules in the endometrial carcinoma tissues and found that HSPA8 was most significantly upregulated. We further validated the overexpression of HSPA8 by using immunoblot analysis. Then, HSPA8 siRNA was transferred into the endometrial cancer cells RL-95-2 and HEC-1B. The depletion of HSPA8 siRNAs significantly reduced cell proliferation, promoted cell apoptosis, and suppressed cell growth in both cell lines. Taken together, HSPA8 plays a vital role in the development of endometrial carcinoma. HSPA8 is a candidate biomarker for early diagnosis and therapy of Stage I endometrial carcinoma.


Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation.

  • Wei Zhou‎ et al.
  • Oncotarget‎
  • 2016‎

Long-term exposure to fine particulate matter (PM2.5) has been reported to be closely associated with the increased lung cancer risk in populations, but the mechanisms underlying PM-associated carcinogenesis are not yet clear. Previous studies have indicated that aberrant epigenetic alterations, such as genome-wide DNA hypomethylation and gene-specific DNA hypermethylation contribute to lung carcinogenesis. And silence or mutation of P53 tumor suppressor gene is the most prevalent oncogenic driver in lung cancer development. To explore the effects of PM2.5 on global and P53 promoter methylation changes and the mechanisms involved, we exposed human bronchial epithelial cells (BEAS-2B) to low concentrations of PM2.5 for 10 days. Our results indicated that PM2.5-induced global DNA hypomethylation was accompanied by reduced DNMT1 expression. PM2.5 also induced hypermethylation of P53 promoter and inhibited its expression by increasing DNMT3B protein level. Furthermore, ROS-induced activation of Akt was involved in PM2.5-induced increase in DNMT3B. In conclusion, our results strongly suggest that repeated exposure to PM2.5 induces epigenetic silencing of P53 through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation, which not only provides a possible explanation for PM-induced lung cancer, but also may help to identify specific interventions to prevent PM-induced lung carcinogenesis.


Differential Gene Expression Profile in the Rat Caudal Vestibular Nucleus is Associated with Individual Differences in Motion Sickness Susceptibility.

  • Jun-Qin Wang‎ et al.
  • PloS one‎
  • 2015‎

To identify differentially expressed genes associated with motion sickness (MS) susceptibility in the rat caudal vestibular nucleus.


Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma.

  • Renumathy Dhanasekaran‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2015‎

In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1-Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1-Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild-type mice. Lung metastases were found in 75% of Sulf1-Tg mice but not in wild-type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor-β (TGF-β)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF-β/SMAD pathway is functional; overexpression of SULF1 promotes TGF-β-induced gene expression and epithelial-mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF-β from the cell surface. We also show that SULF1 expression decreases the interaction between TGF-β1 and its heparan sulfate proteoglycan sequestration receptor, TGFβR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence-free survival (hazard ratio 4.1, 95% confidence interval 1.9-8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF-β expression and with several TGF-β-related epithelial-mesenchymal transition genes in human HCC.


Dihydromyricetin induces mouse hepatoma Hepal-6 cell apoptosis via the transforming growth factor-β pathway.

  • Bin Liu‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Dihydromyricetin (DHM) is a flavonoid compound which possesses potent antitumor activity. In the present study, it was demonstrated that DHM significantly inhibited proliferation and induced apoptosis in mouse hepatocellular carcinoma Hepal‑6 cells. Transforming growth factor β (TGF‑β) is recognized as a major profibrogenic cytokine and is therefore a common target for drugs in the treatment of liver disease. The present study aimed to investigate whether TGF‑β was involved in DHM‑triggered cell‑viability inhibition and apoptosis induction. An MTT assay was used to evaluate the viability of Hepal‑6 cells following DHM treatment. TGF‑β signalling is mediated by Smads and nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a crucial regulator of reactive oxygen species ROS production. TGF‑β, Smad3, phosphorylated (p)‑Smad2/3 and NOX4 protein expression levels were evaluated by western blot analysis. TGF‑β and NOX4 gene expression levels were determined by quantitative polymerase chain reaction. The results indicated that DHM downregulated TGF‑β, Smad3, p‑Smad2/3 and NOX4 in a concentration‑dependent manner. A cell counting assay indicated that DHM also inhibited Hepal‑6 cell growth in a concentration‑dependent manner. TGF‑β expression was significantly decreased following DHM treatment. In conclusion, the results of the present study defined and supported a novel function for DHM, indicating that it induced cell apoptosis by downregulating ROS production via the TGF‑β/Smad3 signaling pathway in mouse hepatocellular carcinoma Hepal‑6 cells.


Efficacy and safety of intravenous nimodipine administration for treatment of hypertension in patients with intracerebral hemorrhage.

  • Yuqian Li‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2015‎

Nicardipine (NC) is the most commonly used antihypertensive drug in neurological patients with hypertension. Although nimodipine (NM) is widely used to treat cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage, trials exploring its antihypertensive effect after intravenous administration in subjects with intracerebral hemorrhage (ICH) are scarce.


Study on Cardiotoxicity and Mechanism of "Fuzi" Extracts Based on Metabonomics.

  • Guangyao Huang‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

To investigate the toxicity of water and ethanol "Fuzi" (FZ) extracts and to explore the toxicity mechanism in rats. Water and ethanol extracts were prepared. Three groups of rats received the water extract, ethanol extract, or water by oral gavage for seven days. Pathological section staining of heart tissue. Colorimetric analysis was used to determine serum lactate dehydrogenase. The metabolic expression of small molecules in rats was measured by a metabolomics method. Western blotting was used to detect the expression of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-β1 (TGF-β1), and caspase-3. Immunohistochemistry was used to detect the expression of CTnI, mTOR, and TGF-β1. The water and ethanol FZ extracts exert cardiotoxic effects via activating the PI3K/Akt/mTOR signaling pathway to induce cardiomyocyte apoptosis.


Identification of Candidate Biomarkers Correlated With the Pathogenesis and Prognosis of Non-small Cell Lung Cancer via Integrated Bioinformatics Analysis.

  • Mengwei Ni‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Background and Objective: Non-small cell lung cancer (NSCLC) accounts for 80-85% of all patients with lung cancer and 5-year relative overall survival (OS) rate is less than 20%, so that identifying novel diagnostic and prognostic biomarkers is urgently demanded. The present study attempted to identify potential key genes associated with the pathogenesis and prognosis of NSCLC. Methods: Four GEO datasets (GSE18842, GSE19804, GSE43458, and GSE62113) were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between NSCLC samples and normal ones were analyzed using limma package, and RobustRankAggreg (RRA) package was used to conduct gene integration. Moreover, Search Tool for the Retrieval of Interacting Genes database (STRING), Cytoscape, and Molecular Complex Detection (MCODE) were utilized to establish protein-protein interaction (PPI) network of these DEGs. Furthermore, functional enrichment and pathway enrichment analyses for DEGs were performed by Funrich and OmicShare. While the expressions and prognostic values of top genes were carried out through Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan Meier-plotter (KM) online dataset. Results: A total of 249 DEGs (113 upregulated and 136 downregulated) were identified after gene integration. Moreover, the PPI network was established with 166 nodes and 1784 protein pairs. Topoisomerase II alpha (TOP2A), a top gene and hub node with higher node degrees in module 1, was significantly enriched in mitotic cell cycle pathway. In addition, Interleukin-6 (IL-6) was enriched in amb2 integrin signaling pathway. The mitotic cell cycle was the most significant pathway in module 1 with the highest P-value. Besides, five hub genes with high degree of connectivity were selected, including TOP2A, CCNB1, CCNA2, UBE2C, and KIF20A, and they were all correlated with worse OS in NSCLC. Conclusion: The results showed that TOP2A, CCNB1, CCNA2, UBE2C, KIF20A, and IL-6 may be potential key genes, while the mitotic cell cycle pathway may be a potential pathway contribute to progression in NSCLC. Further, it could be used as a new biomarker for diagnosis and to direct the synthesis medicine of NSCLC.


Relationship between nasal Carrier isolates and clinical isolates in children with Staphylococcus aureus infections.

  • Shan Tan‎ et al.
  • Microbial pathogenesis‎
  • 2019‎

To assess the relationship between Staphylococcus aureus (S. aureus) strains colonizing the anterior nares and clinical isolate colonizing other, non-nasal infectious sites in children with S. aureus infections.


Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study.

  • Ashley Budu-Aggrey‎ et al.
  • PLoS medicine‎
  • 2019‎

Psoriasis is a common inflammatory skin disease that has been reported to be associated with obesity. We aimed to investigate a possible causal relationship between body mass index (BMI) and psoriasis.


AluYb8 insertion polymorphism in the MUTYH gene impairs mitochondrial DNA maintenance and affects the age of onset of IPF.

  • Wei Zhou‎ et al.
  • Aging‎
  • 2019‎

Idiopathic pulmonary fibrosis (IPF) is an age-related fatal disease with an unknown etiology. Increased oxidative stress and mitochondrial dysfunction are thought to be involved in its pathogenesis. However, the effect of the AluYb8MUTYH polymorphism on IPF is not known.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: