Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts.

  • Stevan D Stojanović‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Deficient autophagy has been recently implicated as a driver of pulmonary fibrosis, yet bioinformatics approaches to study this cellular process are lacking. Autophagy-related 5 and 7 (ATG5/ATG7) are critical elements of macro-autophagy. However, an alternative ATG5/ATG7-independent macro-autophagy pathway was recently discovered, its regulation being unknown. Using a bioinformatics proteome profiling analysis of ATG7-deficient human fibroblasts, we aimed to identify key microRNA (miR) regulators in autophagy.


miR-21-KO Alleviates Alveolar Structural Remodeling and Inflammatory Signaling in Acute Lung Injury.

  • Johanna Christine Jansing‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Acute lung injury (ALI) is characterized by enhanced permeability of the air-blood barrier, pulmonary edema, and hypoxemia. MicroRNA-21 (miR-21) was shown to be involved in pulmonary remodeling and the pathology of ALI, and we hypothesized that miR-21 knock-out (KO) reduces injury and remodeling in ALI. ALI was induced in miR-21 KO and C57BL/6N (wildtype, WT) mice by an intranasal administration of 75 µg lipopolysaccharide (LPS) in saline (n = 10 per group). The control mice received saline alone (n = 7 per group). After 24 h, lung function was measured. The lungs were then excised for proteomics, cytokine, and stereological analysis to address inflammatory signaling and structural damage. LPS exposure induced ALI in both strains, however, only WT mice showed increased tissue resistance and septal thickening upon LPS treatment. Septal alterations due to LPS exposure in WT mice consisted of an increase in extracellular matrix (ECM), including collagen fibrils, elastic fibers, and amorphous ECM. Proteomics analysis revealed that the inflammatory response was dampened in miR-21 KO mice with reduced platelet and neutrophil activation compared with WT mice. The WT mice showed more functional and structural changes and inflammatory signaling in ALI than miR-21 KO mice, confirming the hypothesis that miR-21 KO reduces the development of pathological changes in ALI.


MicroRNA-449a Inhibits Triple Negative Breast Cancer by Disturbing DNA Repair and Chromatid Separation.

  • Beate Vajen‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Chromosomal instability (CIN) can be a driver of tumorigenesis but is also a promising therapeutic target for cancer associated with poor prognosis such as triple negative breast cancer (TNBC). The treatment of TNBC cells with defects in DNA repair genes with poly(ADP-ribose) polymerase inhibitor (PARPi) massively increases CIN, resulting in apoptosis. Here, we identified a previously unknown role of microRNA-449a in CIN. The transfection of TNBC cell lines HCC38, HCC1937 and HCC1395 with microRNA-449a mimics led to induced apoptosis, reduced cell proliferation, and reduced expression of genes in homology directed repair (HDR) in microarray analyses. EME1 was identified as a new target gene by immunoprecipitation and luciferase assays. The reduced expression of EME1 led to an increased frequency of ultrafine bridges, 53BP1 foci, and micronuclei. The induced expression of microRNA-449a elevated CIN beyond tolerable levels and induced apoptosis in TNBC cell lines by two different mechanisms: (I) promoting chromatid mis-segregation by targeting endonuclease EME1 and (II) inhibiting HDR by downregulating key players of the HDR network such as E2F3, BIRC5, BRCA2 and RAD51. The ectopic expression of microRNA-449a enhanced the toxic effect of PARPi in cells with pathogenic germline BRCA1 variants. The newly identified role makes microRNA-449a an interesting therapeutic target for TNBC.


Integrative Bioinformatic Analyses of Global Transcriptome Data Decipher Novel Molecular Insights into Cardiac Anti-Fibrotic Therapies.

  • Maximilian Fuchs‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Integrative bioinformatics is an emerging field in the big data era, offering a steadily increasing number of algorithms and analysis tools. However, for researchers in experimental life sciences it is often difficult to follow and properly apply the bioinformatical methods in order to unravel the complexity and systemic effects of omics data. Here, we present an integrative bioinformatics pipeline to decipher crucial biological insights from global transcriptome profiling data to validate innovative therapeutics. It is available as a web application for an interactive and simplified analysis without the need for programming skills or deep bioinformatics background. The approach was applied to an ex vivo cardiac model treated with natural anti-fibrotic compounds and we obtained new mechanistic insights into their anti-fibrotic action and molecular interplay with miRNAs in cardiac fibrosis. Several gene pathways associated with proliferation, extracellular matrix processes and wound healing were altered, and we could identify micro (mi) RNA-21-5p and miRNA-223-3p as key molecular components related to the anti-fibrotic treatment. Importantly, our pipeline is not restricted to a specific cell type or disease and can be broadly applied to better understand the unprecedented level of complexity in big data research.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: