Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,338 papers

Chronic ethanol consumption resulting in the downregulation of insulin receptor-beta subunit, insulin receptor substrate-1, and glucose transporter 4 expression in rat cardiac muscles.

  • Tian Limin‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2009‎

The objective of this study was to investigate the effect of chronic ethanol intake on the expression of insulin receptor beta subunit (IR-beta), insulin receptor substrate-1 (IRS-1), and glucose transporter 4 (Glut4) in rat cardiac muscle. Forty-eight male Wistar rats were randomly classified into four groups and to each group, ethanol was administered daily at the respective doses of 0 (control, C), 0.5 g kg(-1) (low ethanol, L), 2.5 g kg(-1) (middle ethanol, M), and 5 g kg(-1) (high ethanol, H). Twenty-two weeks later, the rats were anesthetized, and the left ventricle muscles were excised. The IR-beta, IRS-1, and Glut4 mRNA levels in the cardiac muscle tissues were detected by reverse-transcription polymerase chain reaction (RT-PCR); the IR-beta, tyrosine phosphorylation of IR-beta (PY-IR-beta), IRS-1, tyrosine phosphorylation of IRS-1 (PY-IRS-1), and Glut4 protein levels were measured by Western blotting. Compared to the control group, the IR-beta, IRS-1, and Glut4 mRNA levels in groups H and M decreased remarkably. In addition, the protein levels of IR-beta, IRS-1, and Glut4 showed a corresponding decline in ethanol-treated groups, especially in group H. Moreover, the PY-IR-beta and PY-IRS-1 protein levels decreased in the hearts of ethanol-treated rats with corresponding changes in the IR-beta and IRS-1 protein levels. The present study showed that chronic ethanol intake could downregulate the expression levels of IR-beta, IRS-1, and Glut4 in rat cardiac muscles.


Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway.

  • Feiyue Xing‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway.


TIP150 interacts with and targets MCAK at the microtubule plus ends.

  • Kai Jiang‎ et al.
  • EMBO reports‎
  • 2009‎

The microtubule (MT) cytoskeleton orchestrates the cellular plasticity and dynamics that underlie morphogenesis and cell division. Growing MT plus ends have emerged as dynamic regulatory machineries in which specialized proteins-called plus-end tracking proteins (+TIPs)-bind to and control the plus-end dynamics that are essential for cell division and migration. However, the molecular mechanisms underlying the plus-end regulation by +TIPs at spindle and astral MTs have remained elusive. Here, we show that TIP150 is a new +TIP that binds to end-binding protein 1 (EB1) in vitro and co-localizes with EB1 at the MT plus ends in vivo. Suppression of EB1 eliminates the plus-end localization of TIP150. Interestingly, TIP150 also binds to mitotic centromere-associated kinesin (MCAK), an MT depolymerase that localizes to the plus end of MTs. Suppression of TIP150 diminishes the plus-end localization of MCAK. Importantly, aurora B-mediated phosphorylation disrupts the TIP150-MCAK association in vitro. We reason that TIP150 facilitates the EB1-dependent loading of MCAK onto MT plus ends and orchestrates the dynamics at the plus end of MTs.


Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection.

  • Bao-Zhong Wang‎ et al.
  • PloS one‎
  • 2010‎

We demonstrated previously that the incorporation of a membrane-anchored form of flagellin into influenza virus-like particles (VLPs) improved the immunogenicity of VLPs significantly, inducing partially protective heterosubtypic immunity by intramuscular immunization. Because the efficacy of mucosal vaccination is highly dependent on an adjuvant, and is particularly effective for preventing mucosal infections such as influenza, we determined whether the membrane-anchored flagellin is an efficient adjuvant for VLP vaccines by a mucosal immunization route. We compared the adjuvant effect of membrane-anchored and soluble flagellins for immunization with influenza A/PR8 (H1N1) VLPs by the intranasal route in a mouse model. The results demonstrate that membrane-anchored flagellin is an effective adjuvant for intranasal (IN) immunization, inducing enhanced systemic and mucosal antibody responses. High cellular responses were also observed as shown by cytokine production in splenocyte cultures when stimulated with viral antigens. All mice immunized with flagellin-containing VLPs survived challenge with a high lethal dose of homologous virus as well as a high dose heterosubtypic virus challenge (40 LD(50) of A/Philippines/82, H3N2). In contrast, no protection was observed with a standard HA/M1 VLP group upon heterosubtypic challenge. Soluble flagellin exhibited a moderate adjuvant effect when co-administered with VLPs by the mucosal route, as indicated by enhanced systemic and mucosal responses and partial heterosubtypic protection. The membrane-anchored form of flagellin incorporated together with antigen into influenza VLPs is effective as an adjuvant by the mucosal route and unlike standard VLPs, immunization with such chimeric VLPs elicits protective immunity to challenge with a distantly related influenza A virus.


Role of nuclear receptor SHP in metabolism and cancer.

  • Yuxia Zhang‎ et al.
  • Biochimica et biophysica acta‎
  • 2011‎

Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA-binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.


Monoclonal antibodies against nucleophosmin mutants: potentials for the detection of acute myeloid leukemia.

  • Shi Tan‎ et al.
  • International journal of medical sciences‎
  • 2011‎

Nucleophosmin (NPM1) gene mutations resulting in cytoplasmic delocalization of Nucleophosmin (NPMc+) are the most common genetic alteration in acute myeloid leukemia (AML). Here, we attempted to prepare monoclonal antibodies (mAbs) against NPM1 mutation A (NPM-mA) and investigated the mAbs' clinical utility in immunohistochemical detection of NPMc+AML. The pET-32a-NPM-mA vector with the whole open reading frame of the NPM-mA gene was constructed. E.coli BL21 transformed with the vector were induced to express the NPM-mA recombinant protein. BALB/c mice were immunized with the recombinant NPM-mA. Positive clones were selected by indirect ELISA and the mAbs were obtained. Immunohistochemistry was performed to detect the NPMc+ in bone marrow smears from 10 AML patients with NPM-mA. The results showed that the pET-32a-NPM-mA vector was successfully constructed and the NPM-mA recombinant protein was used to immunize the mice. Two positive clones (2G3 and 3F9) were selected. The mAbs against NPM-mA were raised, but did cross-react with wild type NPM1. The mAbs can be used to detect the cytoplasmic dislocation of NPM1 in all AMLs carrying NPM-mA. Our results show that anti-NPM-mA mAbs were produced. Though they would cross-react with wild type NPM1, the mAbs may still have potential in the detection of NPMc+AMLs.


Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.

  • Tomas Cermak‎ et al.
  • Nucleic acids research‎
  • 2011‎

TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online.


A novel mutation in γD-crystallin associated with autosomal dominant congenital cataract in a Chinese family.

  • Li Wang‎ et al.
  • Molecular vision‎
  • 2011‎

To identify the pathogenic gene mutation in a Chinese family with autosomal dominant congenital nuclear cataract.


Effects of L1-ORF2 fragments on green fluorescent protein gene expression.

  • Xiu-Fang Wang‎ et al.
  • Genetics and molecular biology‎
  • 2009‎

The retrotransposon known as long interspersed nuclear element-1 (L1) is 6 kb long, although most L1s in mammalian and other eukaryotic cells are truncated. L1 contains two open reading frames, ORF1 and ORF2, that code for an RNA-binding protein and a protein with endonuclease and reverse transcriptase activities, respectively. In this work, we examined the effects of full length L1-ORF2 and ORF2 fragments on green fluorescent protein gene (GFP) expression when inserted into the pEGFP-C1 vector downstream of GFP. All of the ORF2 fragments in sense orientation inhibited GFP expression more than when in antisense orientation, which suggests that small ORF2 fragments contribute to the distinct inhibitory effects of this ORF on gene expression. These results provide the first evidence that different 280-bp fragments have distinct effects on the termination of gene transcription, and that when inserted in the antisense direction, fragment 280-9 (the 3' end fragment of ORF2) induces premature termination of transcription that is consistent with the effect of ORF2.


Mapping and analysis of chromatin state dynamics in nine human cell types.

  • Jason Ernst‎ et al.
  • Nature‎
  • 2011‎

Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.


RASSF1A suppresses melanoma development by modulating apoptosis and cell-cycle progression.

  • Mei Yi‎ et al.
  • Journal of cellular physiology‎
  • 2011‎

The tumor suppressor candidate gene Ras association domain family 1, isoform A (RASSF1A) encodes a microtubule-associated protein that is implicated in the regulation of cell proliferation, migration, and apoptosis. Several studies indicate that down-regulation of RASSF1A resulting from promoter hypermethylation is a frequent epigenetic abnormality in malignant melanoma. In this study, we report that compared with melanocytes in normal skins or benign skin lesions, RASSF1A is down-regulated in melanoma tissues as well as cell lines, and its expression negatively correlates with lymph node metastasis. Following ectopic expression in RASSF1A-deficient melanoma A375 cell line, RASSF1A reduces cell viability, suppresses cell-cycle progression but enhances apoptotic cell death. In vivo, RASSF1A expression inhibits the tumorigenic potential of A375 cells in nude mice, which also correlates with decreased cell proliferation and increased apoptosis. On the molecular level, ectopic RASSF1A expression leads to differential expression of 209 genes, including 26 down-regulated and 183 up-regulated ones. Among different signaling pathways, activation of the apoptosis signal-regulating kinase 1 (ASK1)/p38 MAP kinase signaling is essential for RASSF1A-induced mitochondrial apoptosis, and the inhibition of the Akt/p70S6 kinase/eIF4E signaling is also important for RASSF1A-mediated apoptosis and cell-cycle arrest. This is the first study exploring the biological functions and the underlying mechanisms of RASSF1A during melanoma development. It also identifies potential targets for further diagnosis and clinical therapy.


Protective autophagy antagonizes oxaliplatin-induced apoptosis in gastric cancer cells.

  • Ling Xu‎ et al.
  • Chinese journal of cancer‎
  • 2011‎

Oxaliplatin-based chemotherapy is used for treating gastric cancer. Autophagy has been extensively implicated in cancer cells; however, its function is not fully understood. Our study aimed to determine if oxaliplatin induce autophagy in gastric cancer MGC803 cells and to assess the effect of autophagy on apoptosis induced by oxaliplatin. MGC803 cells were cultured with oxaliplatin. Cell proliferation was measured using MTT assay, and apoptosis was determined by flow cytometry. Protein expression was detected by Western blot. Autophagy was observed using fluorescent microscopy. Our results showed that the rate of apoptosis was 9.73% and 16.36% when MGC803 cells were treated with 5 and 20 μg/mL oxaliplatin for 24 h, respectively. In addition, caspase activation and poly ADP-ribose polymerase (PARP) cleavage were detected. Furthermore, when MGC803 cells were treated with oxaliplatin for 24 h, an accumulation of punctate LC3 and an increase of LC3-II protein were also detected, indicating the activation of autophagy. Phosphorylation of Akt and mTOR were inhibited by oxaliplatin. Compared to oxaliplatin alone, the combination of autophagy inhibitor chlorochine and oxaliplatin significantly enhanced the inhibition of cell proliferation and the induction of cell apoptosis. In conclusion, oxaliplatin-induced protective autophagy partially prevents apoptosis in gastric cancer MGC803 cells. The combination of autophagy inhibitor and oxaliplatin may be a new therapeutic option for gastric cancer.


ShRNA-targeted centromere protein A inhibits hepatocellular carcinoma growth.

  • Yongmei Li‎ et al.
  • PloS one‎
  • 2011‎

Centromere protein A (CENP-A) plays important roles in cell-cycle regulation and genetic stability. Herein, we aimed to investigate its expression pattern, clinical significance, and biological function in hepatocellular carcinoma (HCC).


Nuclear receptor SHP activates miR-206 expression via a cascade dual inhibitory mechanism.

  • Guisheng Song‎ et al.
  • PloS one‎
  • 2009‎

MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP(-/-) mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRgamma (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRgamma, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRgamma binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRgamma and YY1 reduced its expression. The effects of AP1, ERRgamma, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade "dual inhibitory" mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRgamma led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription.


Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members.

  • Colleen M Snyder‎ et al.
  • PloS one‎
  • 2009‎

Nitric oxide (NO) activates the intrinsic apoptotic pathway to induce cell death. However, the mechanism by which this pathway is activated in cells exposed to NO is not known. Here we report that BAX and BAK are activated by NO and that cytochrome c is released from the mitochondria. Cells deficient in Bax and Bak or Caspase-9 are completely protected from NO-induced cell death. The individual loss of the BH3-only proteins, Bim, Bid, Puma, Bad or Noxa, or Bid knockdown in Bim(-/-)/Puma(-/-) MEFs, does not prevent NO-induced cell death. Our data show that the anti-apoptotic protein MCL-1 undergoes ASK1-JNK1 mediated degradation upon exposure to NO, and that cells deficient in either Ask1 or Jnk1 are protected against NO-induced cell death. NO can inhibit the mitochondrial electron transport chain resulting in an increase in superoxide generation and peroxynitrite formation. However, scavengers of ROS or peroxynitrite do not prevent NO-induced cell death. Collectively, these data indicate that NO degrades MCL-1 through the ASK1-JNK1 axis to induce BAX/BAK-dependent cell death.


Prioritizing functional modules mediating genetic perturbations and their phenotypic effects: a global strategy.

  • Li Wang‎ et al.
  • Genome biology‎
  • 2008‎

We have developed a global strategy based on the Bayesian network framework to prioritize the functional modules mediating genetic perturbations and their phenotypic effects among a set of overlapping candidate modules. We take lethality in Saccharomyces cerevisiae and human cancer as two examples to show the effectiveness of this approach. We discovered that lethality is more conserved at the module level than at the gene level and we identified several potentially 'new' cancer-related biological processes.


Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats.

  • Anamika Ray‎ et al.
  • Toxicology and applied pharmacology‎
  • 2010‎

Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2mg/kg) gene expression profiles and changes in cell signaling pathways 24h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis®. Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.


Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes.

  • Wei Wang‎ et al.
  • Journal of experimental botany‎
  • 2011‎

The cell wall is important for pollen tube growth, but little is known about the molecular mechanism that controls cell wall deposition in pollen tubes. Here, the functional characterization of the pollen-expressed Arabidopsis cellulose synthase-like D genes CSLD1 and CSLD4 that are required for pollen tube growth is reported. Both CSLD1 and CSLD4 are highly expressed in mature pollen grains and pollen tubes. The CSLD1 and CSLD4 proteins are located in the Golgi apparatus and transported to the plasma membrane of the tip region of growing pollen tubes, where cellulose is actively synthesized. Mutations in CSLD1 and CSLD4 caused a significant reduction in cellulose deposition in the pollen tube wall and a remarkable disorganization of the pollen tube wall layers, which disrupted the genetic transmission of the male gametophyte. In csld1 and csld4 single mutants and in the csld1 csld4 double mutant, all the mutant pollen tubes exhibited similar phenotypes: the pollen tubes grew extremely abnormally both in vitro and in vivo, which indicates that CSLD1 and CSLD4 are not functionally redundant. Taken together, these results suggest that CSLD1 and CSLD4 play important roles in pollen tube growth, probably through participation in cellulose synthesis of the pollen tube wall.


Effect of Tai Chi on mononuclear cell functions in patients with non-small cell lung cancer.

  • Jing Liu‎ et al.
  • BMC complementary and alternative medicine‎
  • 2015‎

Tai Chi is the Chinese traditional medicine exercise for mind-body health. The objective of this study is to investigate the effect of Tai Chi Chuan (TCC) exercise on the proliferative and cytolytic/tumoricidal activities of peripheral blood mononuclear cells (PBMCs) in postsurgical non-small cell lung cancer (NSCLC) patients.


The roles of endoplasmic reticulum overload response induced by HCV and NS4B protein in human hepatocyte viability and virus replication.

  • Lingbao Kong‎ et al.
  • PloS one‎
  • 2015‎

Hepatitis C virus (HCV) replication is associated with endoplasmic reticulum (ER) and its infection triggers ER stress. In response to ER stress, ER overload response (EOR) can be activated, which involves the release of Ca2+ from ER, production of reactive oxygen species (ROS) and activation of nuclear factor κB (NF-κB). We have previously reported that HCV NS4B expression activates NF-κB via EOR-Ca2+-ROS pathway. Here, we showed that NS4B expression and HCV infection activated cancer-related NF-κB signaling pathway and induced the expression of cancer-related NF-κB target genes via EOR-Ca2+-ROS pathway. Moreover, we found that HCV-activated EOR-Ca2+-ROS pathway had profound effects on host cell viability and HCV replication. HCV infection induced human hepatocyte death by EOR-Ca2+-ROS pathway, whereas activation of EOR-Ca2+-ROS-NF-κB pathway increased the cell viability. Meanwhile, EOR-Ca2+-ROS-NF-κB pathway inhibited acute HCV replication, which could alleviate the detrimental effect of HCV on cell viability and enhance chronic HCV infection. Together, our findings provide new insights into the functions of EOR-Ca2+-ROS-NF-κB pathway in natural HCV replication and pathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: