Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study.

  • Mathieu C Morissette‎ et al.
  • PloS one‎
  • 2014‎

Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases.


Refining susceptibility loci of chronic obstructive pulmonary disease with lung eqtls.

  • Maxime Lamontagne‎ et al.
  • PloS one‎
  • 2013‎

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Recent genome-wide association studies (GWAS) have identified robust susceptibility loci associated with COPD. However, the mechanisms mediating the risk conferred by these loci remain to be found. The goal of this study was to identify causal genes/variants within susceptibility loci associated with COPD. In the discovery cohort, genome-wide gene expression profiles of 500 non-tumor lung specimens were obtained from patients undergoing lung surgery. Blood-DNA from the same patients were genotyped for 1,2 million SNPs. Following genotyping and gene expression quality control filters, 409 samples were analyzed. Lung expression quantitative trait loci (eQTLs) were identified and overlaid onto three COPD susceptibility loci derived from GWAS; 4q31 (HHIP), 4q22 (FAM13A), and 19q13 (RAB4B, EGLN2, MIA, CYP2A6). Significant eQTLs were replicated in two independent datasets (n = 363 and 339). SNPs previously associated with COPD and lung function on 4q31 (rs1828591, rs13118928) were associated with the mRNA expression of HHIP. An association between mRNA expression level of FAM13A and SNP rs2045517 was detected at 4q22, but did not reach statistical significance. At 19q13, significant eQTLs were detected with EGLN2. In summary, this study supports HHIP, FAM13A, and EGLN2 as the most likely causal COPD genes on 4q31, 4q22, and 19q13, respectively. Strong lung eQTL SNPs identified in this study will need to be tested for association with COPD in case-control studies. Further functional studies will also be needed to understand the role of genes regulated by disease-related variants in COPD.


Safety of inhaled glycopyrronium in patients with COPD: a comprehensive analysis of clinical studies and post-marketing data.

  • Anthony D D'Urzo‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2015‎

Chronic use of inhaled anticholinergics by patients with chronic obstructive pulmonary disease (COPD) has raised long-term safety concerns, particularly cardiovascular. Glycopyrronium is a once-daily anticholinergic with greater receptor selectivity than previously available agents.


Sequestration and homing of bone marrow-derived lineage negative progenitor cells in the lung during pneumococcal pneumonia.

  • Hisashi Suzuki‎ et al.
  • Respiratory research‎
  • 2008‎

Bone marrow (BM)-derived progenitor cells have been shown to have the potential to differentiate into a diversity of cell types involved in tissue repair. The characteristics of these progenitor cells in pneumonia lung is unknown. We have previously shown that Streptococcus pneumoniae induces a strong stimulus for the release of leukocytes from the BM and these leukocytes preferentially sequester in the lung capillaries. Here we report the behavior of BM-derived lineage negative progenitor cells (Lin- PCs) during pneumococcal pneumonia using quantum dots (QDs), nanocrystal fluorescent probes as a cell-tracking technique.


Quantitative disease progression model of α-1 proteinase inhibitor therapy on computed tomography lung density in patients with α-1 antitrypsin deficiency.

  • Michael A Tortorici‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

Early-onset emphysema attributed to α-1 antitrypsin deficiency (AATD) is frequently overlooked and undertreated. RAPID-RCT/RAPID-OLE, the largest clinical trials of purified human α-1 proteinase inhibitor (A1 -PI; 60 mg kg-1  week-1 ) therapy completed to date, demonstrated for the first time that A1 -PI is clinically effective in slowing lung tissue loss in AATD. A posthoc pharmacometric analysis was undertaken to further explore dose, exposure and response.


Long-acting antimuscarinic therapy in patients with chronic obstructive pulmonary disease receiving beta-blockers.

  • Kenneth R Chapman‎ et al.
  • Respiratory research‎
  • 2021‎

Beta-blocker therapies for cardiovascular comorbidities are often withheld in patients with chronic obstructive pulmonary disease (COPD) due to potential adverse effects on airway obstruction. We carried out a post hoc analysis to determine the efficacy and safety of aclidinium in patients with moderate-to-very severe COPD and increased cardiovascular risk receiving beta-blockers at baseline versus non-users.


Unraveling the link between PTBP1 and severe asthma through machine learning and association rule mining method.

  • Saeed Pirmoradi‎ et al.
  • Scientific reports‎
  • 2023‎

Severe asthma is a chronic inflammatory airway disease with great therapeutic challenges. Understanding the genetic and molecular mechanisms of severe asthma may help identify therapeutic strategies for this complex condition. RNA expression data were analyzed using a combination of artificial intelligence methods to identify novel genes related to severe asthma. Through the ANOVA feature selection approach, 100 candidate genes were selected among 54,715 mRNAs in blood samples of patients with severe asthmatic and healthy groups. A deep learning model was used to validate the significance of the candidate genes. The accuracy, F1-score, AUC-ROC, and precision of the 100 genes were 83%, 0.86, 0.89, and 0.9, respectively. To discover hidden associations among selected genes, association rule mining was applied. The top 20 genes including the PTBP1, RAB11FIP3, APH1A, and MYD88 were recognized as the most frequent items among severe asthma association rules. The PTBP1 was found to be the most frequent gene associated with severe asthma among those 20 genes. PTBP1 was the gene most frequently associated with severe asthma among candidate genes. Identification of master genes involved in the initiation and development of asthma can offer novel targets for its diagnosis, prognosis, and targeted-signaling therapy.


The Prevalence of Chronic Obstructive Pulmonary Disease (COPD) and the Heterogeneity of Risk Factors in the Canadian Population: Results from the Canadian Obstructive Lung Disease (COLD) Study.

  • Clarus Leung‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2021‎

To determine the spirometric-based prevalence of COPD across different regions in Canada and to evaluate the site heterogeneity of risk factors.


Loss of GD1-positive Lactobacillus correlates with inflammation in human lungs with COPD.

  • Marc A Sze‎ et al.
  • BMJ open‎
  • 2015‎

The present study assesses the relationship between contents of GD1 (glycerol dehydratase)-positive Lactobacillus, presence of Lactobacillus and the inflammatory response measured in host lung tissue in mild to moderate chronic obstructive pulmonary disease (COPD). We hypothesise that there will be a loss of GD1 producing Lactobacillus with increasing severity of COPD and that GD1 has anti-inflammatory properties.


A blinded evaluation of the efficacy and safety of glycopyrronium, a once-daily long-acting muscarinic antagonist, versus tiotropium, in patients with COPD: the GLOW5 study.

  • Kenneth R Chapman‎ et al.
  • BMC pulmonary medicine‎
  • 2014‎

Two once-daily long-acting muscarinic antagonists (LAMAs) are currently available for the treatment of chronic obstructive pulmonary disease (COPD) - tiotropium and glycopyrronium. Previous studies have compared glycopyrronium with open-label tiotropium. In the GLOW5 study, we compare glycopyrronium with blinded tiotropium.


Bacterial microbiome of lungs in COPD.

  • Marc A Sze‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2014‎

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease.


miR-638 regulates gene expression networks associated with emphysematous lung destruction.

  • Stephanie A Christenson‎ et al.
  • Genome medicine‎
  • 2013‎

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by varying degrees of emphysematous lung destruction and small airway disease, each with distinct effects on clinical outcomes. There is little known about how microRNAs contribute specifically to the emphysema phenotype. We examined how genome-wide microRNA expression is altered with regional emphysema severity and how these microRNAs regulate disease-associated gene expression networks.


Primary Care Severe Asthma Registry and Education Project (PCSAR-EDU): Phase 1 - an e-Delphi for registry definitions and indices of clinician behaviour.

  • Katrina A D'Urzo‎ et al.
  • BMJ open‎
  • 2022‎

Although most asthma is mild to moderate, severe asthma accounts for disproportionate personal and societal costs. Poor co-ordination of care between primary care and specialist settings is recognised as a barrier to achieving optimal outcomes. The Primary Care Severe Asthma Registry and Education (PCSAR-EDU) project aims to address these gaps through the interdisciplinary development and evaluation of both a 'real-world' severe asthma registry and an educational programme for primary care providers. This manuscript describes phase 1 of PCSAR-EDU which involves establishing interdisciplinary consensus on criteria for the: (1) definition of severe asthma; (2) generation of a severe asthma registry and (3) definition of an electronic-medical record data-based Clinician Behaviour Index (CBI).


The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF).

  • Feng Xu‎ et al.
  • EBioMedicine‎
  • 2021‎

The transition from normal lung anatomy to minimal and established fibrosis is an important feature of the pathology of idiopathic pulmonary fibrosis (IPF). The purpose of this report is to examine the molecular and cellular mechanisms associated with this transition.


Hedgehog Signaling as a Therapeutic Target for Airway Remodeling and Inflammation in Allergic Asthma.

  • Anthony Tam‎ et al.
  • Cells‎
  • 2022‎

Genome-wide association studies (GWAS) have shown that variants of patched homolog 1 (PTCH1) are associated with lung function abnormalities in the general population. It has also been shown that sonic hedgehog (SHH), an important ligand for PTCH1, is upregulated in the airway epithelium of patients with asthma and is suggested to be involved in airway remodeling. The contribution of hedgehog signaling to airway remodeling and inflammation in asthma is poorly described. To determine the biological role of hedgehog signaling-associated genes in asthma, gene silencing, over-expression, and pharmacologic inhibition studies were conducted after stimulating human airway epithelial cells or not with transforming growth factor β1 (TGFβ1), an important fibrotic mediator in asthmatic airway remodeling that also interacts with SHH pathway. TGFβ1 increased hedgehog-signaling-related gene expression including SHH, GLI1 and GLI2. Knockdown of PTCH1 or SMO with siRNA, or use of hedgehog signaling inhibitors, consistently attenuated COL1A1 expression induced by TGFβ1 stimulation. In contrast, Ptch1 over-expression augmented TGFβ1-induced an increase in COL1A1 and MMP2 gene expression. We also showed an increase in hedgehog-signaling-related gene expression in primary airway epithelial cells from controls and asthmatics at different stages of cellular differentiation. GANT61, an inhibitor of GLI1/2, attenuated TGFβ1-induced increase in COL1A1 protein expression in primary airway epithelial cells differentiated in air-liquid interface. Finally, to model airway tissue remodeling in vivo, C57BL/6 wildtype (WT) and Ptch1+/- mice were intranasally challenged with house dust mite (HDM) or phosphate-buffered saline (PBS) control. Ptch1+/- mice showed reduced sub-epithelial collagen expression and serum inflammatory proteins compared to WT mice in response to HDM challenge. In conclusion, TGFβ1-induced airway remodeling is partially mediated through the hedgehog signaling pathway via the PTCH1-SMO-GLI axis. The Hedgehog signaling pathway is a promising new potential therapeutic target to alleviate airway tissue remodeling in patients with allergic airways disease.


Findings on Thoracic Computed Tomography Scans and Respiratory Outcomes in Persons with and without Chronic Obstructive Pulmonary Disease: A Population-Based Cohort Study.

  • Wan C Tan‎ et al.
  • PloS one‎
  • 2016‎

Thoracic computed tomography (CT) scans are widely performed in clinical practice, often leading to detection of airway or parenchymal abnormalities in asymptomatic or minimally symptomatic individuals. However, clinical relevance of CT abnormalities is uncertain in the general population.


Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs.

  • Marc A Sze‎ et al.
  • PloS one‎
  • 2014‎

Previous reports have shown that the gastrointestinal (GI) bacterial microbiota can have profound effects on the lungs, which has been described as the "gut-lung axis". However, whether a "lung-gut" axis exists wherein acute lung inflammation perturbs the gut and blood microbiota is unknown.


A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK.

  • Joshua D Campbell‎ et al.
  • Genome medicine‎
  • 2012‎

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease consisting of emphysema, small airway obstruction, and/or chronic bronchitis that results in significant loss of lung function over time.


Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: A randomized clinical trial.

  • Khalil Ansarin‎ et al.
  • BioImpacts : BI‎
  • 2020‎

Introduction: Bromhexine is a potential therapeutic option in COVID-19, but no data from a randomized clinical trial has been available. The present study aimed to evaluate the efficacy of bromhexine in intensive care unit (ICU) admission, mechanical ventilation, and mortality in patients with COVID-19. Methods: An open-label randomized clinical trial study was performed in Tabriz, North-West of Iran. They were randomized to either the treatment with the bromhexine group or the control group, in a 1:1 ratio with 39 patients in each arm. Standard therapy was used in both groups and those patients in the treatment group received oral bromhexine 8 mg three times a day additionally. The primary outcome was a decrease in the rate of ICU admissions, intubation/mechanical ventilation, and mortality. Results: A total of 78 patients with similar demographic and disease characteristics were enrolled. There was a significant reduction in ICU admissions (2 out of 39 vs. 11 out of 39, P = 0.006), intubation (1 out of 39 vs. 9 out of 39, P = 0.007) and death (0 vs. 5, P = 0.027) in the bromhexine treated group compared to the standard group. No patients were withdrawn from the study because of adverse effects. Conclusion: The early administration of oral bromhexine reduces the ICU transfer, intubation, and the mortality rate in patients with COVID-19. This affordable medication can easily be administered everywhere with a huge positive impact(s) on public health and the world economy. Altogether, the verification of our results on a larger scale and different medical centers is strongly recommended. Trial Registration: IRCT202003117046797N4; https://irct.ir/trial/46969.


Gene correlation network analysis to identify regulatory factors in idiopathic pulmonary fibrosis.

  • John E McDonough‎ et al.
  • Thorax‎
  • 2019‎

Idiopathic pulmonary fibrosis (IPF) is a severe lung disease characterised by extensive pathological changes. The objective for this study was to identify the gene network and regulators underlying disease pathology in IPF and its association with lung function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: