Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours.

  • Eamonn Kelly‎ et al.
  • Psychopharmacology‎
  • 2015‎

The novel opioid receptor antagonist, GSK1421498, has been shown to attenuate reward-driven compulsive behaviours, such as stimulant drug seeking or binge eating, in animals and humans. Here, we report new data on the receptor pharmacology of GSK121498, in comparison to naltrexone, naloxone, 6-β-naltrexol and nalmefene.


Distribution of tract deficits in schizophrenia.

  • Ian Ellison-Wright‎ et al.
  • BMC psychiatry‎
  • 2014‎

Gray and white matter brain changes have been found in schizophrenia but the anatomical organizing process underlying these changes remains unknown. We aimed to identify gray and white matter volumetric changes in a group of patients with schizophrenia and to quantify the distribution of white matter tract changes using a novel approach which applied three complementary analyses to diffusion imaging data.


Effects of the BDNF Val66Met polymorphism and met allele load on declarative memory related neural networks.

  • Chris M Dodds‎ et al.
  • PloS one‎
  • 2013‎

It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.


New approaches in psychiatric drug development.

  • Thalia F van der Doef‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2018‎

Numerous novel neuroscience-based drug targets have been identified in recent years. However, it remains unclear how these targets relate to the expression of symptoms in central nervous system (CNS) disorders in general and psychiatric disorders in particular. To discuss this issue, a New Frontiers Meetings of European College of Neuropsychopharmacology (ECNP) was organized to address the challenges in translational neuroscience research that are impeding the effective development of new treatments. The main aim of this meeting was to discuss scientific insights, concepts and methodologies in order to improve drug development for psychiatric disorders. The meeting was designed to bring together stakeholders from academia, pharmaceutical industry, and regulatory agencies. Here we provide a synopsis of the proceedings from the meeting entitled 'New approaches to psychiatric drug development'. New views on psychiatric drug development were presented to address the challenges and pitfalls as identified by the different stakeholders. The general conclusion of the meeting was that drug discovery could be stimulated by designing new classification and sensitive assessment tools for psychiatric disorders, which bear closer relationships to neuropharmacological and neuroscientific developments. This is in line with the vision of precision psychiatry in which patients are clustered, not merely on symptoms, but primarily on biological phenotypes that represent pathophysiological relevant and 'drugable' processes. To achieve these goals, a closer collaboration between all stakeholders in early stages of development is essential to define the research criteria together and to reach consensus on new quantitative biological methodologies and etiology-directed treatments.


Crystal structure of human soluble adenylate cyclase reveals a distinct, highly flexible allosteric bicarbonate binding pocket.

  • Susanne M Saalau-Bethell‎ et al.
  • ChemMedChem‎
  • 2014‎

Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5'-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein.


Acetylcholine prioritises direct synaptic inputs from entorhinal cortex to CA1 by differential modulation of feedforward inhibitory circuits.

  • Jon Palacios-Filardo‎ et al.
  • Nature communications‎
  • 2021‎

Acetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, feedforward inhibition from entorhinal cortex exhibits greater depression than CA3 resulting in a selective enhancement of excitatory-inhibitory balance and CA1 activation by entorhinal inputs. Entorhinal and CA3 pathways engage different feedforward interneuron subpopulations and cholinergic modulation of presynaptic function is mediated differentially by muscarinic M3 and M4 receptors, respectively. Thus, our data support a role and mechanisms for acetylcholine to prioritise novel information inputs to CA1 during memory formation.


Biophysical mapping of the adenosine A2A receptor.

  • Andrei Zhukov‎ et al.
  • Journal of medicinal chemistry‎
  • 2011‎

A new approach to generating information on ligand receptor interactions within the binding pocket of G protein-coupled receptors has been developed, called Biophysical Mapping (BPM). Starting from a stabilized receptor (StaR), minimally engineered for thermostability, additional single mutations are then added at positions that could be involved in small molecule interactions. The StaR and a panel of binding site mutants are captured onto Biacore chips to enable characterization of the binding of small molecule ligands using surface plasmon resonance (SPR) measurement. A matrix of binding data for a set of ligands versus each active site mutation is then generated, providing specific affinity and kinetic information (K(D), k(on), and k(off)) of receptor-ligand interactions. This data set, in combination with molecular modeling and docking, is used to map the small molecule binding site for each class of compounds. Taken together, the many constraints provided by these data identify key protein-ligand interactions and allow the shape of the site to be refined to produce a high quality three-dimensional picture of ligand binding, thereby facilitating structure based drug design. Results of biophysical mapping of the adenosine A(2A) receptor are presented.


Oscillatory underpinnings of mismatch negativity and their relationship with cognitive function in patients with schizophrenia.

  • Muzaffer Kaser‎ et al.
  • PloS one‎
  • 2013‎

Impairments in mismatch negativity (MMN) generation have been consistently reported in patients with schizophrenia. However, underlying oscillatory activity of MMN deficits in schizophrenia and the relationship with cognitive impairments have not been investigated in detail. Time-frequency power and phase analyses can provide more detailed measures of brain dynamics of MMN deficits in schizophrenia.


Neural and behavioral effects of a novel mu opioid receptor antagonist in binge-eating obese people.

  • Victoria C Cambridge‎ et al.
  • Biological psychiatry‎
  • 2013‎

Binge eating is associated with obesity and has been conceptualized as "food addiction." However, this view has received only inconsistent support in humans, and limited evidence relates key neurocircuitry to the disorder. Moreover, relatively few studies have used pharmacologic functional magnetic resonance imaging to probe the underlying basis of altered eating behaviors.


Identification of novel adenosine A(2A) receptor antagonists by virtual screening.

  • Christopher J Langmead‎ et al.
  • Journal of medicinal chemistry‎
  • 2012‎

Virtual screening was performed against experimentally enabled homology models of the adenosine A(2A) receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11-13 from 5, pK(I) = 7.5-8.5, 13- to >100-fold selective versus adenosine A(1); 14-16 from 1, pK(I) = 7.9-9.0, 19- to 59-fold selective).


Functional connectivity during Stroop task performance.

  • Ben J Harrison‎ et al.
  • NeuroImage‎
  • 2005‎

Using covariance-based multivariate analysis, we examined patterns of functional connectivity in rCBF on a practice-extended version of the Stroop color-word paradigm. Color-word congruent and incongruent conditions were presented in six AB trials to healthy subjects during 12 H2(15)O PET scans. Analyses identified two reproducible canonical eigenimages (CE) from the PET data, which were converted to a standard Z score scale after cross-validation resampling and correction for random subject effects. The first CE corresponded to practice-dependent changes in covarying rCBF that occurred over early task repetitions and correlated with improved behavioral performance. This included many regions previously implicated by PET and fMRI studies of this task, which we suggest may represent two "parallel" networks: (i) a cingulo-frontal system that was initially engaged in selecting and mapping a task-relevant response (color naming) when the attentional demands of the task were greatest; and (ii) a ventral visual processing stream whose concurrent decrease in activity represented the task-irrelevant inhibition of word reading. The second CE corresponded to a consistent paradigmatic effect of Stroop interference on covarying rCBF. Coactivations were located in dorsal and ventral prefrontal regions as well as frontopolar cortex. This pattern supports existing evidence that prefrontal regions are involved in maintaining attentional control over conflicting response systems. Taken together, these findings may be more in line with theoretical models that emphasize a role for practice in the emergence of Stroop phenomena. These findings may also provide some additional insight into the nature of anterior cingulate- and prefrontal cortical contributions to implementing cognitive control in the brain.


Structures of Human A1 and A2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity.

  • Robert K Y Cheng‎ et al.
  • Structure (London, England : 1993)‎
  • 2017‎

The adenosine A1 and A2A receptors belong to the purinergic family of G protein-coupled receptors, and regulate diverse functions of the cardiovascular, respiratory, renal, inflammation, and CNS. Xanthines such as caffeine and theophylline are weak, non-selective antagonists of adenosine receptors. Here we report the structure of a thermostabilized human A1 receptor at 3.3 Å resolution with PSB36, an A1-selective xanthine-based antagonist. This is compared with structures of the A2A receptor with PSB36 (2.8 Å resolution), caffeine (2.1 Å), and theophylline (2.0 Å) to highlight features of ligand recognition which are common across xanthines. The structures of A1R and A2AR were analyzed to identify the differences that are important selectivity determinants for xanthine ligands, and the role of T2707.35 in A1R (M2707.35 in A2AR) in conferring selectivity was confirmed by mutagenesis. The structural differences confirmed to lead to selectivity can be utilized in the design of new subtype-selective A1R or A2AR antagonists.


Small molecule AZD4635 inhibitor of A2AR signaling rescues immune cell function including CD103+ dendritic cells enhancing anti-tumor immunity.

  • Alexandra Borodovsky‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated.


Opioid Antagonists and the A118G Polymorphism in the μ-Opioid Receptor Gene: Effects of GSK1521498 and Naltrexone in Healthy Drinkers Stratified by OPRM1 Genotype.

  • Hisham Ziauddeen‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2016‎

The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate-heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders.


Towards high throughput GPCR crystallography: In Meso soaking of Adenosine A2A Receptor crystals.

  • Prakash Rucktooa‎ et al.
  • Scientific reports‎
  • 2018‎

Here we report an efficient method to generate multiple co-structures of the A2A G protein-coupled receptor (GPCR) with small-molecules from a single preparation of a thermostabilised receptor crystallised in Lipidic Cubic Phase (LCP). Receptor crystallisation is achieved following purification using a low affinity "carrier" ligand (theophylline) and crystals are then soaked in solutions containing the desired (higher affinity) compounds. Complete datasets to high resolution can then be collected from single crystals and seven structures are reported here of which three are novel. The method significantly improves structural throughput for ligand screening using stabilised GPCRs, thereby actively driving Structure-Based Drug Discovery (SBDD).


BMI-related cortical morphometry changes are associated with altered white matter structure.

  • Nenad Medic‎ et al.
  • International journal of obesity (2005)‎
  • 2019‎

While gross measures of brain structure have shown alterations with increasing body mass index (BMI), the extent and nature of such changes has varied substantially across studies. Here, we sought to determine whether small-scale morphometric measures might prove more sensitive and reliable than larger scale measures and whether they might offer a valuable opportunity to link cortical changes to underlying white matter changes. To examine this, we explored the association of BMI with millimetre-scale Gaussian curvature, in addition to standard measures of morphometry such as cortical thickness, surface area and mean curvature. We also assessed the volume and integrity of the white matter, using white matter signal intensity and fractional anisotropy (FA). We hypothesised that BMI would be linked to small-scale changes in Gaussian curvature and that this phenomenon would be mediated by changes in the integrity of the underlying white matter.


Comparison of Orexin 1 and Orexin 2 Ligand Binding Modes Using X-ray Crystallography and Computational Analysis.

  • Mathieu Rappas‎ et al.
  • Journal of medicinal chemistry‎
  • 2020‎

The orexin system, which consists of the two G protein-coupled receptors OX1 and OX2, activated by the neuropeptides OX-A and OX-B, is firmly established as a key regulator of behavioral arousal, sleep, and wakefulness and has been an area of intense research effort over the past two decades. X-ray structures of the receptors in complex with 10 new antagonist ligands from diverse chemotypes are presented, which complement the existing structural information for the system and highlight the critical importance of lipophilic hotspots and water molecules for these peptidergic GPCR targets. Learnings from the structural information regarding the utility of pharmacophore models and how selectivity between OX1 and OX2 can be achieved are discussed.


Identification of BDNF sensitive electrophysiological markers of synaptic activity and their structural correlates in healthy subjects using a genetic approach utilizing the functional BDNF Val66Met polymorphism.

  • Fruzsina Soltész‎ et al.
  • PloS one‎
  • 2014‎

Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF) is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such "synaptogenic" therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load) on electrophysiological (EEG) markers of synaptic activity and their structural (MRI) correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met). Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN); and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left) prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early clinical development to examine target engagement or drug related efficacy of synaptic repair therapies in humans.


Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design.

  • John A Christopher‎ et al.
  • Journal of medicinal chemistry‎
  • 2013‎

Biophysical fragment screening of a thermostabilized β1-adrenergic receptor (β1AR) using surface plasmon resonance (SPR) enabled the identification of moderate affinity, high ligand efficiency (LE) arylpiperazine hits 7 and 8. Subsequent hit to lead follow-up confirmed the activity of the chemotype, and a structure-based design approach using protein-ligand crystal structures of the β1AR resulted in the identification of several fragments that bound with higher affinity, including indole 19 and quinoline 20. In the first example of GPCR crystallography with ligands derived from fragment screening, structures of the stabilized β1AR complexed with 19 and 20 were determined at resolutions of 2.8 and 2.7 Å, respectively.


Cholinergic muscarinic M1/M4 receptor networks in dementia with Lewy bodies.

  • Sean J Colloby‎ et al.
  • Brain communications‎
  • 2020‎

Cholinergic dysfunction is central in dementia with Lewy bodies, possibly contributing to the cognitive and psychiatric phenotypes of this condition. We investigated baseline muscarinic M1/M4 receptor spatial covariance patterns in dementia with Lewy bodies and their association with changes in cognition and neuropsychiatric symptoms after 12 weeks of treatment with the cholinesterase inhibitor donepezil. Thirty-eight participants (14 cholinesterase inhibitor naive patients, 24 healthy older individuals) underwent 123I-iodo-quinuclidinyl-benzilate (M1/M4 receptor assessment) and 99mTc-exametazime (perfusion) single-photon emission computed tomography scanning. We implemented voxel principal components analysis, producing a series of images representing patterns of inter-correlated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns associated with patients. A discreet M1/M4 pattern that distinguished patients from controls (W1,19.7 = 16.7, P = 0.001), showed relative decreased binding in right lateral temporal and insula, as well as relative preserved/increased binding in frontal, precuneus, lingual and cuneal regions, implicating nodes within attention and dorsal visual networks. We then derived from patients an M1/M4 pattern that correlated with a positive change in mini-mental state examination (r = 0.52, P = 0.05), showing relative preserved/increased uptake in prefrontal, temporal pole and anterior cingulate, elements of attention-related networks. We also generated from patients an M1/M4 pattern that correlated with a positive change in neuropsychiatric inventory score (r = 0.77, P = 0.002), revealing relative preserved/increased uptake within a bilateral temporal-precuneal-striatal system. Although in a small sample and therefore tentative, we posit that optimal response of donepezil on cognitive and neuropsychiatric signs in patients with dementia with Lewy bodies were associated with a maintenance of muscarinic M1/M4 receptor expression within attentional/executive and ventral visual network hubs, respectively.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: