Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Functional Assessment of Patient-Derived Retinal Pigment Epithelial Cells Edited by CRISPR/Cas9.

  • Leah P Foltz‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Retinitis pigmentosa is the most common form of inherited blindness and can be caused by a multitude of different genetic mutations that lead to similar phenotypes. Specifically, mutations in ubiquitously expressed splicing factor proteins are known to cause an autosomal dominant form of the disease, but the retina-specific pathology of these mutations is not well understood. Fibroblasts from a patient with splicing factor retinitis pigmentosa caused by a missense mutation in the PRPF8 splicing factor were used to produce three diseased and three CRISPR/Cas9-corrected induced pluripotent stem cell (iPSC) clones. We differentiated each of these clones into retinal pigment epithelial (RPE) cells via directed differentiation and analyzed the RPE cells in terms of gene and protein expression, apicobasal polarity, and phagocytic ability. We demonstrate that RPE cells can be produced from patient-derived and corrected cells and they exhibit morphology and functionality similar but not identical to wild-type RPE cells in vitro. Functionally, the RPE cells were able to establish apicobasal polarity and phagocytose photoreceptor outer segments at the same capacity as wild-type cells. These data suggest that patient-derived iPSCs, both diseased and corrected, are able to differentiate into RPE cells with a near normal phenotype and without differences in phagocytosis, a result that differs from previous mouse models. These RPE cells can now be studied to establish a disease-in-a-dish system relevant to retinitis pigmentosa.


Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators.

  • Irina Elcheva‎ et al.
  • Nature communications‎
  • 2014‎

Advancing pluripotent stem cell technologies for modelling haematopoietic stem cell development and blood therapies requires identifying key regulators of haematopoietic commitment from human pluripotent stem cells (hPSCs). Here, by screening the effect of 27 candidate factors, we reveal two groups of transcriptional regulators capable of inducing distinct haematopoietic programs from hPSCs: pan-myeloid (ETV2 and GATA2) and erythro-megakaryocytic (GATA2 and TAL1). In both cases, these transcription factors directly convert hPSCs to endothelium, which subsequently transform into blood cells with pan-myeloid or erythro-megakaryocytic potential. These data demonstrate that two distinct genetic programs regulate the haematopoietic development from hPSCs and that both of these programs specify hPSCs directly to haemogenic endothelial cells. In addition, this study provides a novel method for the efficient induction of blood and endothelial cells from hPSCs via the overexpression of modified mRNA for the selected transcription factors.


Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments.

  • Ning Leng‎ et al.
  • Nature methods‎
  • 2015‎

Oscillatory gene expression is fundamental to development, but technologies for monitoring expression oscillations are limited. We have developed a statistical approach called Oscope to identify and characterize the transcriptional dynamics of oscillating genes in single-cell RNA-seq data from an unsynchronized cell population. Applying Oscope to a number of data sets, we demonstrated its utility and also identified a potential artifact in the Fluidigm C1 platform.


Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema.

  • Ron Stewart‎ et al.
  • PLoS computational biology‎
  • 2013‎

The salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced. Using a novel comparative approach to analyzing RNA-seq data, we characterized the transcriptional dynamics of the regenerating axolotl limb with respect to the human gene set. This approach involved de novo assembly of axolotl transcripts, RNA-seq transcript quantification without a reference genome, and transformation of abundances from axolotl contigs to human genes. We found a prominent burst in oncogene expression during the first day and blastemal/limb bud genes peaking at 7 to 14 days. In addition, we found that limb patterning genes, SALL genes, and genes involved in angiogenesis, wound healing, defense/immunity, and bone development are enriched during blastema formation and development. Finally, we identified a category of genes with no prior literature support for limb regeneration that are candidates for further evaluation based on their expression pattern during the regenerative process.


A mesoderm-derived precursor for mesenchymal stem and endothelial cells.

  • Maxim A Vodyanik‎ et al.
  • Cell stem cell‎
  • 2010‎

Among the three embryonic germ layers, the mesoderm is a major source of the mesenchymal precursors giving rise to skeletal and connective tissues, but these precursors have not previously been identified and characterized. Using human embryonic stem cells directed toward mesendodermal differentiation, we show that mesenchymal stem/stromal cells (MSCs) originate from a population of mesodermal cells identified by expression of apelin receptor. In semisolid medium, these precursors form FGF2-dependent compact spheroid colonies containing mesenchymal cells with a transcriptional profile representative of mesoderm-derived embryonic mesenchyme. When transferred to adherent cultures, individual colonies give rise to MSC lines with chondro-, osteo-, and adipogenic differentiation potentials. Although the MSC lines lacked endothelial potential, endothelial cells could be derived from the mesenchymal colonies, suggesting that, similar to hematopoietic cells, MSCs arise from precursors with angiogenic potential. Together, these studies identified a common precursor of mesenchymal and endothelial cells, mesenchymoangioblast, as the source of mesoderm-derived MSCs.


LongSAGE profiling of nine human embryonic stem cell lines.

  • Martin Hirst‎ et al.
  • Genome biology‎
  • 2007‎

To facilitate discovery of novel human embryonic stem cell (ESC) transcripts, we generated 2.5 million LongSAGE tags from 9 human ESC lines. Analysis of this data revealed that ESCs express proportionately more RNA binding proteins compared with terminally differentiated cells, and identified novel ESC transcripts, at least one of which may represent a marker of the pluripotent state.


Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes.

  • Katie L Vermillion‎ et al.
  • Developmental biology‎
  • 2018‎

During vertebrate development, progenitor cells give rise to tissues and organs through a complex choreography that commences at gastrulation. A hallmark event of gastrulation is the formation of the primitive streak, a linear assembly of cells along the anterior-posterior (AP) axis of the developing organism. To examine the primitive streak at a single-cell resolution, we measured the transcriptomes of individual chick cells from the streak or the surrounding tissue (the rest of the area pellucida) in Hamburger-Hamilton stage 4 embryos. The single-cell transcriptomes were then ordered by the statistical method Wave-Crest to deduce both the relative position along the AP axis and the prospective lineage of single cells. The ordered transcriptomes reveal intricate patterns of gene expression along the primitive streak.


Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice.

  • Xi Lou‎ et al.
  • Cardiovascular research‎
  • 2023‎

We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)].


Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells.

  • Jared Brown‎ et al.
  • PLoS computational biology‎
  • 2021‎

Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.


TimeMeter assesses temporal gene expression similarity and identifies differentially progressing genes.

  • Peng Jiang‎ et al.
  • Nucleic acids research‎
  • 2020‎

Comparative time series transcriptome analysis is a powerful tool to study development, evolution, aging, disease progression and cancer prognosis. We develop TimeMeter, a statistical method and tool to assess temporal gene expression similarity, and identify differentially progressing genes where one pattern is more temporally advanced than the other. We apply TimeMeter to several datasets, and show that TimeMeter is capable of characterizing complicated temporal gene expression associations. Interestingly, we find: (i) the measurement of differential progression provides a novel feature in addition to pattern similarity that can characterize early developmental divergence between two species; (ii) genes exhibiting similar temporal patterns between human and mouse during neural differentiation are under strong negative (purifying) selection during evolution; (iii) analysis of genes with similar temporal patterns in mouse digit regeneration and axolotl blastema differentiation reveals common gene groups for appendage regeneration with potential implications in regenerative medicine.


An In Vitro Human Segmentation Clock Model Derived from Embryonic Stem Cells.

  • Li-Fang Chu‎ et al.
  • Cell reports‎
  • 2019‎

Defects in somitogenesis result in vertebral malformations at birth known as spondylocostal dysostosis (SCDO). Somites are formed with a species-specific periodicity controlled by the "segmentation clock," which comprises a group of oscillatory genes in the presomitic mesoderm. Here, we report that a segmentation clock model derived from human embryonic stem cells shows many hallmarks of the mammalian segmentation clock in vivo, including a dependence on the NOTCH and WNT signaling pathways. The gene expression oscillations are highly synchronized, displaying a periodicity specific to the human clock. Introduction of a point of mutation into HES7, a specific mutation previously associated with clinical SCDO, eliminated clock gene oscillations, successfully reproducing the defects in the segmentation clock. Thus, we provide a model for studying the previously inaccessible human segmentation clock to better understand the mechanisms contributing to congenital skeletal defects.


SOX17 integrates HOXA and arterial programs in hemogenic endothelium to drive definitive lympho-myeloid hematopoiesis.

  • Ho Sun Jung‎ et al.
  • Cell reports‎
  • 2021‎

SOX17 has been implicated in arterial specification and the maintenance of hematopoietic stem cells (HSCs) in the murine embryo. However, knowledge about molecular pathways and stage-specific effects of SOX17 in humans remains limited. Here, using SOX17-knockout and SOX17-inducible human pluripotent stem cells (hPSCs), paired with molecular profiling studies, we reveal that SOX17 is a master regulator of HOXA and arterial programs in hemogenic endothelium (HE) and is required for the specification of HE with robust lympho-myeloid potential and DLL4+CXCR4+ phenotype resembling arterial HE at the sites of HSC emergence. Along with the activation of NOTCH signaling, SOX17 directly activates CDX2 expression, leading to the upregulation of the HOXA cluster genes. Since deficiencies in HOXA and NOTCH signaling contribute to the impaired in vivo engraftment of hPSC-derived hematopoietic cells, the identification of SOX17 as a key regulator linking arterial and HOXA programs in HE may help to program HSC fate from hPSCs.


EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

  • Ning Leng‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2015‎

With improvements in next-generation sequencing technologies and reductions in price, ordered RNA-seq experiments are becoming common. Of primary interest in these experiments is identifying genes that are changing over time or space, for example, and then characterizing the specific expression changes. A number of robust statistical methods are available to identify genes showing differential expression among multiple conditions, but most assume conditions are exchangeable and thereby sacrifice power and precision when applied to ordered data.


Chromatin architecture reorganization during stem cell differentiation.

  • Jesse R Dixon‎ et al.
  • Nature‎
  • 2015‎

Higher-order chromatin structure is emerging as an important regulator of gene expression. Although dynamic chromatin structures have been identified in the genome, the full scope of chromatin dynamics during mammalian development and lineage specification remains to be determined. By mapping genome-wide chromatin interactions in human embryonic stem (ES) cells and four human ES-cell-derived lineages, we uncover extensive chromatin reorganization during lineage specification. We observe that although self-associating chromatin domains are stable during differentiation, chromatin interactions both within and between domains change in a striking manner, altering 36% of active and inactive chromosomal compartments throughout the genome. By integrating chromatin interaction maps with haplotype-resolved epigenome and transcriptome data sets, we find widespread allelic bias in gene expression correlated with allele-biased chromatin states of linked promoters and distal enhancers. Our results therefore provide a global view of chromatin dynamics and a resource for studying long-range control of gene expression in distinct human cell lineages.


Evaluation of de novo transcriptome assemblies from RNA-Seq data.

  • Bo Li‎ et al.
  • Genome biology‎
  • 2014‎

De novo RNA-Seq assembly facilitates the study of transcriptomes for species without sequenced genomes, but it is challenging to select the most accurate assembly in this context. To address this challenge, we developed a model-based score, RSEM-EVAL, for evaluating assemblies when the ground truth is unknown. We show that RSEM-EVAL correctly reflects assembly accuracy, as measured by REF-EVAL, a refined set of ground-truth-based scores that we also developed. Guided by RSEM-EVAL, we assembled the transcriptome of the regenerating axolotl limb; this assembly compares favorably to a previous assembly. A software package implementing our methods, DETONATE, is freely available at http://deweylab.biostat.wisc.edu/detonate.


Nonirradiated NOD,B6.SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells.

  • Brian E McIntosh‎ et al.
  • Stem cell reports‎
  • 2015‎

In this study, we demonstrate a newly derived mouse model that supports engraftment of human hematopoietic stem cells (HSCs) in the absence of irradiation. We cross the NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) strain with the C57BL/6J-Kit(W-41J)/J (C57BL/6.Kit(W41)) strain and engraft, without irradiation, the resulting NBSGW strain with human cord blood CD34+ cells. At 12-weeks postengraftment in NBSGW mice, we observe human cell chimerism in marrow (97% ± 0.4%), peripheral blood (61% ± 2%), and spleen (94% ± 2%) at levels observed with irradiation in NSG mice. We also detected a significant number of glycophorin-A-positive expressing cells in the developing NBSGW marrow. Further, the observed levels of human hematopoietic chimerism mimic those reported for both irradiated NSG and NSG-transgenic strains. This mouse model permits HSC engraftment while avoiding the complicating hematopoietic, gastrointestinal, and neurological side effects associated with irradiation and allows investigators without access to radiation to pursue engraftment studies with human HSCs.


Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.

  • Ryan Lister‎ et al.
  • Nature‎
  • 2011‎

Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However, it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines, along with methylomes of ES cells, somatic cells, and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability, including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation, and differences in CG methylation and histone modifications. Lastly, differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency, providing an iPSC reprogramming signature that is maintained after differentiation.


Epigenomic analysis of multilineage differentiation of human embryonic stem cells.

  • Wei Xie‎ et al.
  • Cell‎
  • 2013‎

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


A study of the relationships between oligonucleotide properties and hybridization signal intensities from NimbleGen microarray datasets.

  • Hairong Wei‎ et al.
  • Nucleic acids research‎
  • 2008‎

Well-defined relationships between oligonucleotide properties and hybridization signal intensities (HSI) can aid chip design, data normalization and true biological knowledge discovery. We clarify these relationships using the data from two microarray experiments containing over three million probes from 48 high-density chips. We find that melting temperature (T(m)) has the most significant effect on HSI while length for the long oligonucleotides studied has very little effect. Analysis of positional effect using a linear model provides evidence that the protruding ends of probes contribute more than tethered ends to HSI, which is further validated by specifically designed match fragment sliding and extension experiments. The impact of sequence similarity (SeqS) on HSI is not significant in comparison with other oligonucleotide properties. Using regression and regression tree analysis, we prioritize these oligonucleotide properties based on their effects on HSI. The implications of our discoveries for the design of unbiased oligonucleotides are discussed. We propose that isothermal probes designed by varying the length is a viable strategy to reduce sequence bias, though imposing selection constraints on other oligonucleotide properties is also essential.


Major Histocompatibility Complex-Matched Arteries Have Similar Patency to Autologous Arteries in a Mauritian Cynomolgus Macaque Major Histocompatibility Complex-Defined Transplant Model.

  • John P Maufort‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background Arterial bypass and interposition grafts are used routinely across multiple surgical subspecialties. Current options include both autologous and synthetic materials; however, each graft presents specific limitations. Engineering artificial small-diameter arteries with vascular cells derived from induced pluripotent stem cells could provide a useful therapeutic solution. Banking induced pluripotent stem cells from rare individuals who are homozygous for human leukocyte antigen alleles has been proposed as a strategy to facilitate economy of scale while reducing the potential for rejection of induced pluripotent stem cell-derived transplanted tissues. Currently, there is no standardized model to study transplantation of small-diameter arteries in major histocompatibility complex-defined backgrounds. Methods and Results In this study, we developed a limb-sparing nonhuman primate model to study arterial allotransplantation in the absence of immunosuppression. Our model was used to compare degrees of major histocompatibility complex matching between arterial grafts and recipient animals with long-term maintenance of patency and function. Unexpectedly, we (1) found that major histocompatibility complex partial haplomatched allografts perform as well as autologous control grafts; (2) detected little long-term immune response in even completely major histocompatibility complex mismatched allografts; and (3) observed that arterial grafts become almost completely replaced over time with recipient cells. Conclusions Given these findings, induced pluripotent stem cell-derived tissue-engineered blood vessels may prove to be promising and customizable grafts for future use by cardiac, vascular, and plastic surgeons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: