Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Enhanced PRL-1 expression in placenta-derived mesenchymal stem cells accelerates hepatic function via mitochondrial dynamics in a cirrhotic rat model.

  • Jae Yeon Kim‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Placenta-derived mesenchymal stem cells (PD-MSCs) have been highlighted as an alternative cell therapy agent that has become a next-generation stem cell treatment. Phosphatase of regenerating liver-1 (PRL-1), an immediate early gene, plays a critical role during liver regeneration. Here, we generated enhanced PRL-1 in PD-MSCs (PD-MSCsPRL-1, PRL-1+) using lentiviral and nonviral gene delivery systems and investigated mitochondrial functions by PD-MSCPRL-1 transplantation for hepatic functions in a rat bile duct ligation (BDL) model.


Functionally enhanced placenta-derived mesenchymal stem cells inhibit adipogenesis in orbital fibroblasts with Graves' ophthalmopathy.

  • Jae Yeon Kim‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Placenta-derived mesenchymal stem cells (PD-MSCs) have unique immunomodulatory properties. Phosphatase of regenerating liver-1 (PRL-1) regulates the self-renewal ability of stem cells and promotes proliferation. Graves' ophthalmopathy (GO) is an autoimmune inflammatory disease of the orbit and is characterized by increased orbital levels of adipose tissue. Here, we evaluated the therapeutic mechanism for regulation of adipogenesis by PRL-1-overexpressing PD-MSCs (PD-MSCsPRL-1, PRL-1+) in orbital fibroblast (OF) with GO patients.


Increased Phosphatase of Regenerating Liver-1 by Placental Stem Cells Promotes Hepatic Regeneration in a Bile-Duct-Ligated Rat Model.

  • Jong Ho Choi‎ et al.
  • Cells‎
  • 2021‎

Phosphatase of regenerating liver-1 (PRL-1) controls various cellular processes and liver regeneration. However, the roles of PRL-1 in liver regeneration induced by chorionic-plate-derived mesenchymal stem cells (CP-MSCs) transplantation remain unknown. Here, we found that increased PRL-1 expression by CP-MSC transplantation enhanced liver regeneration in a bile duct ligation (BDL) rat model by promoting the migration and proliferation of hepatocytes. Engrafted CP-MSCs promoted liver function via enhanced hepatocyte proliferation through increased PRL-1 expression in vivo and in vitro. Moreover, higher increased expression of PRL-1 regulated CP-MSC migration into BDL-injured rat liver through enhancement of migration-related signals by increasing Rho family proteins. The dual effects of PRL-1 on proliferation of hepatocytes and migration of CP-MSCs were substantially reduced when PRL-1 was silenced with siRNA-PRL-1 treatment. These findings suggest that PRL-1 may serve as a multifunctional enhancer for therapeutic applications of CP-MSC transplantation.


Increased PRL-1 in BM-derived MSCs triggers anaerobic metabolism via mitochondria in a cholestatic rat model.

  • Jae Yeon Kim‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2023‎

Mesenchymal stem cell (MSC) therapy in chronic liver disease is associated with mitochondrial anaerobic metabolism. Phosphatase of regenerating liver-1 (PRL-1), known as protein tyrosine phosphatase type 4A, member 1 (PTP4A1), plays a critical role in liver regeneration. However, its therapeutic mechanism remains obscure. The aim of this study was to establish genetically modified bone marrow (BM)-MSCs overexpressing PRL-1 (BM-MSCsPRL-1) and to investigate their therapeutic effects on mitochondrial anaerobic metabolism in a bile duct ligation (BDL)-injured cholestatic rat model. BM-MSCsPRL-1 were generated with lentiviral and nonviral gene delivery systems and characterized. Compared with naive cells, BM-MSCsPRL-1 showed an improved antioxidant capacity and mitochondrial dynamics and decreased cellular senescence. In particular, mitochondrial respiration in BM-MSCsPRL-1 generated using the nonviral system was significantly increased as well as mtDNA copy number and total ATP production. Moreover, transplantation of BM-MSCsPRL-1 generated using the nonviral system had predominantly antifibrotic effects and restored hepatic function in a BDL rat model. Decreased cytoplasmic lactate and increased mitochondrial lactate upon the administration of BM-MSCsPRL-1 indicated significant alterations in mtDNA copy number and ATP production, activating anaerobic metabolism. In conclusion, BM-MSCsPRL-1 generated by a nonviral gene delivery system enhanced anaerobic mitochondrial metabolism in a cholestatic rat model, improving hepatic function.


Combination Therapy of Placenta-Derived Mesenchymal Stem Cells with WKYMVm Promotes Hepatic Function in a Rat Model with Hepatic Disease via Vascular Remodeling.

  • Ji Hye Jun‎ et al.
  • Cells‎
  • 2022‎

Changes in the structure and function of blood vessels are important factors that play a primary role in regeneration of injured organs. WKYMVm has been reported as a therapeutic factor that promotes the migration and proliferation of angiogenic cells. Additionally, we previously demonstrated that placenta-derived mesenchymal stem cells (PD-MSCs) induce hepatic regeneration in hepatic failure via antifibrotic effects. Therefore, our objectives were to analyze the combination effect of PD-MSCs and WKYMVm in a rat model with bile duct ligation (BDL) and evaluate their therapeutic mechanism. To analyze the anti-fibrotic and angiogenic effects on liver regeneration, it was analyzed using ELISA, qRT-PCR, Western blot, immunofluorescence, and immunohistochemistry. Collagen accumulation was significantly decreased in PD-MSCs with the WKYMVm combination (Tx+WK) group compared with the nontransplantation (NTx) and PD-MSC-transplanted (Tx) group (p < 0.05). Furthermore, the combination of PD-MSCs with WKYMVm significantly promoted hepatic function by increasing hepatocyte proliferation and albumin as well as angiogenesis by activated FPR2 signaling (p < 0.05). The combination therapy of PD-MSCs with WKYMVm could be an efficient treatment in hepatic diseases via vascular remodeling. Therefore, the combination therapy of PD-MSCs with WKYMVm could be a new therapeutic strategy in degenerative medicine.


Dynamic Regulation of miRNA Expression by Functionally Enhanced Placental Mesenchymal Stem Cells PromotesHepatic Regeneration in a Rat Model with Bile Duct Ligation.

  • Jae Yeon Kim‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Placenta-derived mesenchymal stem cells (PD-MSCs) were highlighted as therapeutic sources in several degenerative diseases. Recently, microRNAs (miRNAs)were found to mediate one of the therapeutic mechanisms of PD-MSCs in regenerative medicine. To enhance the therapeutic effects of PD-MSCs, we established functionally enhanced PD-MSCs with phosphatase of regenerating liver-1 overexpression (PRL-1(+)). However, the profile and functions of miRNAs induced by PRL-1(+) PD-MSCs in a rat model with hepatic failure prepared by bile duct ligation (BDL) remained unclear. Hence, the objectives of the present study were to analyze the expression of miRNAs and investigate their therapeutic mechanisms for hepatic regeneration via PRL-1(+) in a rat model with BDL. We selected candidate miRNAs based on microarray analysis. Under hypoxic conditions, compared with migrated naïve PD-MSCs, migrated PRL-1(+) PD-MSCs showed improved integrin-dependent migration abilitythrough Ras homolog (RHO) family-targeted miRNA expression (e.g., hsa-miR-30a-5p, 340-5p, and 146a-3p). Moreover, rno-miR-30a-5p and 340-5p regulated engraftment into injured rat liver by transplantedPRL-1(+) PD-MSCs through the integrin family. Additionally, an increase inplatelet-derived growth factor receptor A (PDGFRA) by suppressing rno-miR-27a-3p improved vascular structure in rat liver tissues after PRL-1(+) PD-MSC transplantation. Furthermore, decreased rno-miR-122-5p was significantly correlated with increased proliferation of hepatocytes in liver tissues by PRL-1(+) PD-MSCs byactivating the interleukin-6 (IL-6) signaling pathway through the repression of rno-miR-21-5p. Taken together, these findings improve the understandingof therapeutic mechanisms based on miRNA-mediated stem-cell therapy in liver diseases.


Exosomes from Placenta-Derived Mesenchymal Stem Cells Are Involved in Liver Regeneration in Hepatic Failure Induced by Bile Duct Ligation.

  • Ji Hye Jun‎ et al.
  • Stem cells international‎
  • 2020‎

Although the liver has a regenerative capacity, hepatic failure is a severe and irreversible chronic disease. Placenta-derived mesenchymal stem cells (PD-MSCs) have distinctive features, such as recycling of the placenta waste after birth, ease of accessibility, abundant cell numbers, and strong immunosuppressive properties. Previously, we reported that PD-MSCs can regenerate the liver in hepatic failure through antifibrotic and autophagic mechanisms. Many reports have investigated whether exosomes, which are formed by the budding of vesicular bodies and are emitted into the blood, from stem cells have therapeutic potential in various diseases. C-reactive protein (CRP) is produced in hepatocytes and secreted via vessels. Therefore, the objectives of this study were to compare the expression of CRP in exosomes of a hepatic failure rat model (bile duct ligation, BDL) and to evaluate the therapeutic effect by their correlation between CRP and angiogenesis depending on PD-MSC transplantation. The exosomes were analyzed in a BDL rat model with transplantation of PD-MSCs through LC-MS analysis and precipitation solution. The exosomes, CRP, and factors related to these molecules were evaluated and quantified in exosomes as well as investigated by real-time PCR, Western blot, and immunofluorescence (IF) in vivo and in vitro. CRP was present in exosomes from serum of a rat model and increased by PD-MSC transplantation. In the exosomes, CRP upregulated the factors related to the Wnt signaling pathway and angiogenesis in the BDL rat liver-transplanted PD-MSCs. Also, CRP regulated the Wnt pathway and vascularization in rat hepatocytes by interacting with endothelial cells. Therefore, our findings indicate that CRP in exosomes excreted by PD-MSCs functions in angiogenesis via the Wnt signaling pathway.


PRL-1 overexpressed placenta-derived mesenchymal stem cells suppress adipogenesis in Graves' ophthalmopathy through SREBP2/HMGCR pathway.

  • Mira Park‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Graves' ophthalmopathy (GO) is a disorder, in which orbital connective tissues get in inflammation and increase in volume. Stimulants such as thyroid-stimulating hormone (TSH), insulin-like growth factor 1(IGF-1), IL-1, interferon γ, and platelet-derived growth factor cause differentiation into adipocytes of orbital fibroblasts (OFs) in the orbital fat and extraocular muscles. Human placental mesenchymal stem cells (hPMSCs) are known to have immune modulation effects on disease pathogenesis. Some reports suggest that hPMSCs can elicit therapeutic effects, but to date, research on this has been insufficient. In this study, we constructed PRL-1 overexpressed hPMSCs (hPMSCsPRL-1) in an attempt to enhance the suppressive function of adipogenesis in GO animal models.


Increased phosphatase regenerating liver-1 trigger vascular remodeling in injured ovary via platelet-derived growth factor signaling pathway.

  • Hyeri Park‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

Vascular abnormalities in the ovary cause infertility accompanied by ovarian insufficiency due to a microenvironment of barren ovarian tissues. Placenta-derived mesenchymal stem cells (PD-MSCs, Naïve) treatment in ovarian dysfunction shows angiogenic effect, however, the therapeutic mechanism between ovarian function and vascular remodeling still unclear. Therefore, we examined whether by phosphatase regenerating liver-1 (PRL-1), which is correlated with angiogenesis in reproductive systems, overexpressed PD-MSCs could maximize the angiogenic effects in an ovarian tissues injured of rat model with partial ovariectomy and their therapeutic mechanism by enhanced vascular function via PDGF signaling.


Cullin-RING E3 ubiquitin ligase 4 regulates neurite morphogenesis during neurodevelopment.

  • Tammy Shim‎ et al.
  • iScience‎
  • 2024‎

Neuritogenesis is crucial for establishing proper neuronal connections during brain development; its failure causes neurodevelopmental defects. Cullin-RING E3 ubiquitin ligase complexes participate in various neurodevelopmental processes by regulating protein stability. We demonstrated the regulatory function of Cullin-RING E3 ubiquitin ligase 4 (CRL4) in neurite morphogenesis during early neurodevelopment. Cul4a and Cul4b, the core scaffold proteins of CRL4, exhibit high expression and activation within the cytosol of developing neurons, regulated by neuronal stimulation through N-methyl D-aspartate (NMDA) receptor signaling. CRL4 also interacts with cytoskeleton-regulating proteins involved in neurite morphogenesis. Notably, genetic depletion and inhibition of cytosolic CRL4 enhance neurite extension and branching in developing neurons. Conversely, Cul4a overexpression suppresses basal and NMDA-enhanced neuritogenesis. Furthermore, CRL4 and its substrate adaptor regulate the polyubiquitination and proteasomal degradation of doublecortin protein. Collectively, our findings suggest that CRL4 ensures proper neurite morphogenesis in developing neurons by regulating cytoskeleton-regulating proteins.


PEDF-Mediated Mitophagy Triggers the Visual Cycle by Enhancing Mitochondrial Functions in a H2O2-Injured Rat Model.

  • Jae Yeon Kim‎ et al.
  • Cells‎
  • 2021‎

Retinal degenerative diseases result from oxidative stress and mitochondrial dysfunction, leading to the loss of visual acuity. Damaged retinal pigment epithelial (RPE) and photoreceptor cells undergo mitophagy. Pigment epithelium-derived factor (PEDF) protects from oxidative stress in RPE and improves mitochondrial functions. Overexpression of PEDF in placenta-derived mesenchymal stem cells (PD-MSCs; PD-MSCsPEDF) provides therapeutic effects in retinal degenerative diseases. Here, we investigated whether PD-MSCsPEDF restored the visual cycle through a mitophagic mechanism in RPE cells in hydrogen peroxide (H2O2)-injured rat retinas. Compared with naïve PD-MSCs, PD-MSCsPEDF augmented mitochondrial biogenesis and translation markers as well as mitochondrial respiratory states. In the H2O2-injured rat model, intravitreal administration of PD-MSCsPEDF restored total retinal layer thickness compared to that of naïve PD-MSCs. In particular, PTEN-induced kinase 1 (PINK1), which is the major mitophagy marker, exhibited increased expression in retinal layers and RPE cells after PD-MSCPEDF transplantation. Similarly, expression of the visual cycle enzyme retinol dehydrogenase 11 (RDH11) showed the same patterns as PINK1 levels, resulting in improved visual activity. Taken together, these findings suggest that PD-MSCsPEDF facilitate mitophagy and restore the loss of visual cycles in H2O2-injured rat retinas and RPE cells. These data indicate a new strategy for next-generation MSC-based treatment of retinal degenerative diseases.


Formyl Peptide Receptor 2 Alleviates Hepatic Fibrosis in Liver Cirrhosis by Vascular Remodeling.

  • Ji Hye Jun‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Hexapeptide WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met), a ligand of formyl peptide receptor 2, exhibits anti-inflammatory and angiogenic properties in disease models. However, the therapeutic effects of WKYMVm on hepatic fibrosis have not been evaluated to date. Therefore, we investigated whether WKYMVm exerts antifibrotic effects and induces vascular regeneration in a rat model of bile duct ligation (BDL). The antifibrotic and angiogenic effects of WKYMVm on liver regeneration in the BDL rat model were analyzed using biochemical assays, qRT-PCR, western blotting, immunofluorescence, and immunohistochemistry. To determine the effects of WKYMVm on hepatic fibrosis and angiogenesis in vitro, we measured the expression levels of fibrotic factors in hepatic stellate cells (HSCs) and angiogenic factors in human umbilical vein endothelial cells (HUVECs). WKYMVm attenuated the expression of collagen type I (Col I) and α-smooth muscle actin (α-SMA) and significantly increased the levels of angiogenetic factors in the BDL model (p < 0.05). WKYMVm reduced fibrotic marker expression in transforming growth factor (TGF)-β-induced HSCs and promoted angiogenic activity through tube formation in 5-Fluorouracil (FU)-treated HUVECs (p < 0.05). Also, WKYMVm administration enhanced hepatocyte proliferation in BDL rats (p < 0.05). The WKYMVm alleviates hepatic fibrosis by inhibiting HSC activation and promotes hepatic regeneration via vascular remodeling. These data suggest that the WKYMVm may be a new therapeutic agent for liver fibrosis.


Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development.

  • Hee Min Yoo‎ et al.
  • Molecules and cells‎
  • 2022‎

The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.


Activation of the EGFR-PI3K-CaM pathway by PRL-1-overexpressing placenta-derived mesenchymal stem cells ameliorates liver cirrhosis via ER stress-dependent calcium.

  • Se Ho Kim‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Cholesterol accumulation and calcium depletion induce hepatic injury via the endoplasmic reticulum (ER) stress response. ER stress regulates the calcium imbalance between the ER and mitochondria. We previously reported that phosphatase of regenerating liver-1 (PRL-1)-overexpressing placenta-derived mesenchymal stem cells (PD-MSCsPRL-1) promoted liver regeneration via mitochondrial dynamics in a cirrhotic rat model. However, the role of PRL-1 in ER stress-dependent calcium is not clear. Therefore, we demonstrated that PD-MSCsPRL-1 improved hepatic functions by regulating ER stress and calcium channels in a rat model of bile duct ligation (BDL).


Epidemiologic and Clinical Characteristics of Patients with Severe Fever with Thrombocytopenia Syndrome at Tertiary Hospital in Jeju for 10 years.

  • Jae Yeon Kim‎ et al.
  • Infection & chemotherapy‎
  • 2023‎

Severe fever with thrombocytopenia syndrome (SFTS), which was first discovered in China in 2009, is an infectious disease with a high mortality rate, particularly in East Asia. This study aimed to investigate the epidemiological and clinical characteristics and risk factors for mortality by analyzing SFTS cases accumulated for up to ten years in Jeju, Korea.


Differential spatial expression of peripheral olfactory neuron-derived BACE1 induces olfactory impairment by region-specific accumulation of β-amyloid oligomer.

  • Seung-Jun Yoo‎ et al.
  • Cell death & disease‎
  • 2017‎

Olfactory dysfunction is a common symptom associated with neurodegenerative diseases including Alzheimer's disease (AD). Although evidence exists to suggest that peripheral olfactory organs are involved in the olfactory dysfunction that accompanies AD pathology, the underlying mechanisms are not fully understood. As confirmed using behavioral tests, transgenic mice overexpressing a Swedish mutant form of human amyloid precursor proteins exhibited olfactory impairments prior to evidence of cognitive impairment. By measuring the expression of tyrosine hydroxylase, we observed that specific regions of the olfactory bulb (OB) in Tg2576 mice, specifically the ventral portion exhibited significant decreases in the number of dopaminergic neurons in the periglomerular regions from the early stage of AD. To confirm the direct linkage between these olfactory impairments and AD-related pathology, β-site amyloid precursor protein cleaving enzyme 1 (BACE1)-the initiating enzyme in Aβ genesis-and β-amyloid peptide (Aβ), hallmarks of AD were analyzed. We found that an increase in BACE1 expression coincided with an elevation of amyloid-β (Aβ) oligomers in the ventral region of OB. Moreover, olfactory epithelium (OE), in particular the ectoturbinate in which axons of olfactory sensory neurons (OSNs) have direct connections with the dendrites of mitral/tufted cells in the ventral part of OB, exhibited significant decreases in both thickness and cell number even at early stages. This result suggests that Aβ oligomer toxicity in the OE may have induced a decline in the number of OSNs and functional impairment of the olfactory system. We first demonstrated that disproportionate levels of regional damage in the peripheral olfactory system may be a specific symptom of AD with Aβ oligomer accumulation occurring prior to damage within the CNS. This regional damage in the olfactory system early in the progression of AD may be closely related to AD-related pathological abnormality and olfactory dysfunction found in AD patients.


Efficacy of Gene Modification in Placenta-Derived Mesenchymal Stem Cells Based on Nonviral Electroporation.

  • Jae Yeon Kim‎ et al.
  • International journal of stem cells‎
  • 2021‎

Mesenchymal stem cell (MSC)-based therapy using gene delivery systems has been suggested for degenerative diseases. Although MSC-based clinical applications are effective and safe, the mode of action remains unclear. Researchers have commonly applied viral-based gene modification because this system has efficient vehicles. While viral transfection carries many risks, such as oncogenes and chromosomal integration, nonviral gene delivery techniques are less expensive, easier to handle, and safe, although they are less efficient. The electroporation method, which uses Nucleofection technology, provides critical opportunities for hard-to-transfect primary cell lines, including MSCs. Therefore, to improve the therapeutic efficacy using genetically modified MSCs, researchers must determine the optimal conditions for the introduction of the Nucleofection technique in MSCs. Here, we suggest optimal methods for gene modification in PD-MSCs using an electroporation gene delivery system for clinical application.


The Impact of the Percent of Residual Prostate-Specific Antigen on Metastasis-Free Survival in Patients with Persistent Prostate-Specific Antigen after Radical Prostatectomy.

  • Dan Bee Lee‎ et al.
  • The world journal of men's health‎
  • 2023‎

Persistent levels of prostate-specific antigen (PSA) is a poor prognostic factor for recurrence after radical prostatectomy (RP). We investigated the impact of the percentage of residual PSA (%rPSA) [(post-/preoperative PSA)×100], representing a biochemical residual tumor, and the first postoperative PSA (fPSA) level on metastasis-free survival (MFS) in men with persistent levels of PSA after RP.


A novel PRF1 gene mutation in a fatal neonate case with type 2 familial hemophagocytic lymphohistiocytosis.

  • Jae Yeon Kim‎ et al.
  • Korean journal of pediatrics‎
  • 2014‎

Hemophagocytic lymphohistiocytosis (HLH) occurs in the primary form (genetic or familial) or secondary form (acquired). The familial form of HLH (FHL) is a potentially fatal autosomal recessive disorder that occurs because of constitutional defects in cell-mediated cytotoxicity. Here, we report a fatal neonatal case of type 2 FHL (FHL2) that involved a novel frameshift mutation. Clinically, the newborn presented with severe sepsis-like features and required mechanical ventilation and continuous venovenous hemodiafiltration. Flow cytometry analysis showed marked HLH and complete absence of intracytoplasmic perforin expression in cytotoxic cells; therefore, we performed molecular genetic analyses for PRF1 mutations, which showed that the patient had a compound heterozygous mutation in PRF1, that is, c.65delC (p.Pro22Argfs*2) and c.1090_1091delCT (p.Leu364Glufs*93). Clinical and genetic assessments for FHL are required for neonates with refractory fever and progressive multiple organ failure, particularly when there is no evidence of microbiological or metabolic cause.


Upregulation of C-Reactive Protein by Placenta-Derived Mesenchymal Stem Cells Promotes Angiogenesis in A Rat Model with Cirrhotic Liver.

  • Ji Hye Jun‎ et al.
  • International journal of stem cells‎
  • 2020‎

Liver cirrhosis is accompanied by abnormal vascular shunts. The Wnt pathway is essential for endothelial cell survival and proliferation. C-reactive protein (CRP), which is produced by hepatocyte, activates angiogenesis in cardiovascular diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: