Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles.

  • Anja E Eisenhardt‎ et al.
  • Oncotarget‎
  • 2016‎

B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map. Importantly, we identify two evolutionary conserved phosphorylation clusters around T401 and S419 in the B-Raf hinge region. SILAC labelling and genetic/biochemical follow-up revealed that these clusters are phosphorylated in the contexts of oncogenic Ras, sorafenib induced Raf dimerization and in the background of the V600E mutation. We further show that the vemurafenib sensitive phosphorylation of the T401 cluster occurs in trans within a Raf dimer. Substitution of the Ser/Thr-residues of this cluster by alanine residues enhances the transforming potential of B-Raf, indicating that these phosphorylation sites suppress its signaling output. Moreover, several B-Raf phosphorylation sites, including T401 and S419, are somatically mutated in tumors, further illustrating the importance of phosphorylation for the regulation of this kinase.


CGEF-1 regulates mTORC1 signaling during adult longevity and stress response in C. elegans.

  • Yujie Li‎ et al.
  • Oncotarget‎
  • 2018‎

The mechanistic target of rapamycin (mTOR) kinase is central to metabolism and growth, and has a conserved role in aging. mTOR functions in two complexes, mTORC1 and mTORC2. In diverse eukaryotes, inhibition of mTORC1 signaling increases lifespan. mTORC1 transduces anabolic signals to stimulate protein synthesis and inhibits autophagy. In this study, we demonstrate that CGEF-1, the C. elegans homolog of the human guanine nucleotide exchange factor Dbl, is a novel binding partner of RHEB-1 and activator of mTORC1 signaling in C. elegans. cgef-1 mutants display prolonged lifespan and enhanced stress resistance. The transcription factors DAF-16/FoxO and SKN-1/Nrf are required for increased longevity and stress tolerance, and induce protective gene expression in cgef-1 mutants. Genetic evidence indicates that cgef-1 functions in the same pathway with rheb-1, the mTOR kinase let-363, and daf-15/Raptor. When cgef-1 is inactivated, phosphorylation of 4E-BP, a central mTORC1 substrate for protein translation is reduced in C. elegans. Moreover, autophagy is increased upon cgef-1 and mTORC1 inhibition. In addition, we show that in human cells Dbl associates with Rheb and stimulates mTORC1 downstream targets for protein synthesis suggesting that the function of CGEF-1/Dbl in the mTORC1 signaling pathway is evolutionarily conserved. These findings have important implications for mTOR functions and signaling mechanisms in aging and age-related diseases.


C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

  • Wenjing Qi‎ et al.
  • PLoS genetics‎
  • 2017‎

Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS) is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß)/bone morphogenic protein (BMP) signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.


Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis.

  • Nicola Wanner‎ et al.
  • PloS one‎
  • 2011‎

The assembly of specific synaptic connections represents a prime example of cellular recognition. Members of the Ig superfamily are among the most ancient proteins represented in the genomes of both mammalian and invertebrate organisms, where they constitute a trans-synaptic adhesion system. The correct connectivity patterns of the highly conserved immunoglobulin superfamily proteins nephrin and Neph1 are crucial for the assembly of functional neuronal circuits and the formation of the kidney slit diaphragm, a synapse-like structure forming the filtration barrier. Here, we utilize the nematode C. elegans model for studying the requirements of synaptic specificity mediated by nephrin-Neph proteins. In C. elegans, the nephrin/Neph1 orthologs SYG-2 and SYG-1 form intercellular contacts strictly in trans between epithelial guidepost cells and neurons specifying the localization of synapses. We demonstrate a functional conservation between mammalian nephrin and SYG-2. Expression of nephrin effectively compensated loss of syg-2 function in C. elegans and restored defective synaptic connectivity further establishing the C. elegans system as a valuable model for slit diaphragm proteins. Next, we investigated the effect of SYG-1 and SYG-2 trans homodimerization respectively. Strikingly, synapse assembly could be induced by homophilic SYG-1 but not SYG-2 binding indicating a critical role of SYG-1 intracellular signalling for morphogenetic events and pointing toward the dynamic and stochastic nature of extra- and intracellular nephrin-Neph interactions to generate reproducible patterns of synaptic connectivity.


Combined flow cytometry and high-throughput image analysis for the study of essential genes in Caenorhabditis elegans.

  • Blanca Hernando-Rodríguez‎ et al.
  • BMC biology‎
  • 2018‎

Advances in automated image-based microscopy platforms coupled with high-throughput liquid workflows have facilitated the design of large-scale screens utilising multicellular model organisms such as Caenorhabditis elegans to identify genetic interactions, therapeutic drugs or disease modifiers. However, the analysis of essential genes has lagged behind because lethal or sterile mutations pose a bottleneck for high-throughput approaches, and a systematic way to analyse genetic interactions of essential genes in multicellular organisms has been lacking.


LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena.

  • Yu-Yang Jiang‎ et al.
  • PLoS genetics‎
  • 2019‎

The length of cilia is controlled by a poorly understood mechanism that involves members of the conserved RCK kinase group, and among them, the LF4/MOK kinases. The multiciliated protist model, Tetrahymena, carries two types of cilia (oral and locomotory) and the length of the locomotory cilia is dependent on their position with the cell. In Tetrahymena, loss of an LF4/MOK ortholog, LF4A, lengthened the locomotory cilia, but also reduced their number. Without LF4A, cilia assembled faster and showed signs of increased intraflagellar transport (IFT). Consistently, overproduced LF4A shortened cilia and downregulated IFT. GFP-tagged LF4A, expressed in the native locus and imaged by total internal reflection microscopy, was enriched at the basal bodies and distributed along the shafts of cilia. Within cilia, most LF4A-GFP particles were immobile and a few either diffused or moved by IFT. We suggest that the distribution of LF4/MOK along the cilium delivers a uniform dose of inhibition to IFT trains that travel from the base to the tip. In a longer cilium, the IFT machinery may experience a higher cumulative dose of inhibition by LF4/MOK. Thus, LF4/MOK activity could be a readout of cilium length that helps to balance the rate of IFT-driven assembly with the rate of disassembly at steady state. We used a forward genetic screen to identify a CDK-related kinase, CDKR1, whose loss-of-function suppressed the shortening of cilia caused by overexpression of LF4A, by reducing its kinase activity. Loss of CDKR1 alone lengthened both the locomotory and oral cilia. CDKR1 resembles other known ciliary CDK-related kinases: LF2 of Chlamydomonas, mammalian CCRK and DYF-18 of C. elegans, in lacking the cyclin-binding motif and acting upstream of RCKs. The new genetic tools we developed here for Tetrahymena have potential for further dissection of the principles of cilia length regulation in multiciliated cells.


Unraveling the role of quorum sensing-dependent metabolic homeostasis of the activated methyl cycle in a cooperative population of Burkholderia glumae.

  • Yongsung Kang‎ et al.
  • Scientific reports‎
  • 2019‎

The activated methyl cycle (AMC) is responsible for the generation of S-adenosylmethionine (SAM), which is a substrate of N-acylhomoserine lactone (AHL) synthases. However, it is unknown whether AHL-mediated quorum sensing (QS) plays a role in the metabolic flux of the AMC to ensure cell density-dependent biosynthesis of AHL in cooperative populations. Here we show that QS controls metabolic homeostasis of the AMC critical for AHL biosynthesis and cellular methylation in Burkholderia glumae, the causal agent of rice panicle blight. Activation of genes encoding SAM-dependent methyltransferases, S-adenosylhomocysteine (SAH) hydrolase, and methionine synthases involved in the AMC by QS is essential for maintaining the optimal concentrations of methionine, SAM, and SAH required for bacterial cooperativity as cell density increases. Thus, the absence of QS perturbed metabolic homeostasis of the AMC and caused pleiotropic phenotypes in B. glumae. A null mutation in the SAH hydrolase gene negatively affected AHL and ATP biosynthesis and the activity of SAM-dependent methyltransferases including ToxA, which is responsible for the biosynthesis of a key virulence factor toxoflavin in B. glumae. These results indicate that QS controls metabolic flux of the AMC to secure the biosynthesis of AHL and cellular methylation in a cooperative population.


PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy.

  • Stefanie Ruf‎ et al.
  • Autophagy‎
  • 2017‎

Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1's and PLK1's functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.


SnAvi--a new tandem tag for high-affinity protein-complex purification.

  • Ursula Schäffer‎ et al.
  • Nucleic acids research‎
  • 2010‎

Systematic tandem-affinity-purification (TAP) of protein complexes was tremendously successful in yeast and has changed the general concept of how we understand protein function in eukaryotic cells. The transfer of this method to other model organisms has been difficult and may require specific adaptations. We were especially interested to establish a cell-type-specific TAP system for Caenorhabditis elegans, a model animal well suited to high-throughput analysis, proteomics and systems biology. By combining the high-affinity interaction between in vivo biotinylated target-proteins and streptavidin with the usage of a newly identified epitope of the publicly shared SB1 monoclonal antibody we created a novel in vivo fluorescent tag, the SnAvi-Tag. We show the versatile application of the SnAvi-Tag in Escherichia coli, vertebrate cells and in C. elegans for tandem affinity purification of protein complexes, western blotting and also for the in vivo sub-cellular localization of labelled proteins.


Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans.

  • Jennifer M A Tullet‎ et al.
  • Cell‎
  • 2008‎

Insulin/IGF-1-like signaling (IIS) is central to growth and metabolism and has a conserved role in aging. In C. elegans, reductions in IIS increase stress resistance and longevity, effects that require the IIS-inhibited FOXO protein DAF-16. The C. elegans transcription factor SKN-1 also defends against oxidative stress by mobilizing the conserved phase 2 detoxification response. Here we show that IIS not only opposes DAF-16 but also directly inhibits SKN-1 in parallel. The IIS kinases AKT-1, -2, and SGK-1 phosphorylate SKN-1, and reduced IIS leads to constitutive SKN-1 nuclear accumulation in the intestine and SKN-1 target gene activation. SKN-1 contributes to the increased stress tolerance and longevity resulting from reduced IIS and delays aging when expressed transgenically. Furthermore, SKN-1 that is constitutively active increases life span independently of DAF-16. Our findings indicate that the transcription network regulated by SKN-1 promotes longevity and is an important direct target of IIS.


Anti-Colorectal Cancer Effects of Probiotic-Derived p8 Protein.

  • Byung Chull An‎ et al.
  • Genes‎
  • 2019‎

Recently, we reported a novel therapeutic probiotic-derived protein, p8, which has anti-colorectal cancer (anti-CRC) properties. In vitro experiments using a CRC cell line (DLD-1), anti-proliferation activity (about 20%) did not improve after increasing the dose of recombinant-p8 (r-p8) to >10 μM. Here, we show that this was due to the low penetrative efficiency of r-p8 exogenous treatment. Furthermore, we found that r-p8 entered the cytosol through endocytosis, which might be a reason for the low penetration efficiency. Therefore, to improve the therapeutic efficacy of p8, we tried to improve delivery to CRC cells. This resulted in endogenous expression of p8 and increased the anti-proliferative effects by up to 2-fold compared with the exogenous treatment (40 μM). Anti-migration activity also increased markedly. Furthermore, we found that the anti-proliferation activity of p8 was mediated by inhibition of the p53-p21-Cyclin B1/Cdk1 signal pathway, resulting in growth arrest at the G2 phase of the cell cycle. Taken together, these results suggest that p8 is toxic to cancer cells, shows stable expression within cells, and shows strong cancer suppressive activity by inducing cell cycle arrest. Therefore, p8 is a strong candidate for gene therapy if it can be loaded onto cancer-specific viruses.


Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

  • Tim Wolf‎ et al.
  • Experimental gerontology‎
  • 2014‎

Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing.


Mitochondrial Perturbations Couple mTORC2 to Autophagy in C. elegans.

  • Helena Aspernig‎ et al.
  • Cell reports‎
  • 2019‎

Autophagy is stimulated by stress conditions and needs to be precisely tuned to ensure cellular homeostasis and organismal development and health. The kinase mechanistic target of rapamycin (mTOR) forms the enzymatic core of the highly conserved mTOR complexes mTORC1 and mTORC2. mTORC1 is a key inhibitor of autophagy, yet the function of mTORC2 in autophagy is controversial. We here show that inactivation of mTORC2 and its direct target serum- and glucocorticoid-inducible kinase 1 (SGK-1) potently induces autophagy and the autophagic degradation of mitochondria in C. elegans. Enhanced autophagy in mTORC2- or SGK-1-deficient animals contributes to their developmental and reproductive defects and is independent of the canonical SGK-1 effector DAF-16/FOXO. Importantly, we find that inactivation of mTORC2-SGK-1 signaling impairs mitochondrial homeostasis and triggers an increased release of mitochondria-derived reactive oxygen species (mtROS) to induce autophagy. Thus, mitochondrial stress couples reduced mTORC2 activity to enhanced autophagic turnover.


Reprogramming of the transcriptome after heat stress mediates heat hormesis in Caenorhabditis elegans.

  • Fan Xu‎ et al.
  • Nature communications‎
  • 2023‎

Transient stress experiences not only trigger acute stress responses, but can also have long-lasting effects on cellular functions. In Caenorhabditis elegans, a brief exposure to heat shock during early adulthood extends lifespan and improves stress resistance, a phenomenon known as heat hormesis. Here, we investigated the prolonged effect of hormetic heat stress on the transcriptome of worms and found that the canonical heat shock response is followed by a profound transcriptional reprogramming in the post-stress period. This reprogramming relies on the endoribonuclease ENDU-2 but not the heat shock factor 1. ENDU-2 co-localizes with chromatin and interacts with RNA polymerase II, enabling specific regulation of transcription after the stress period. Failure to activate the post-stress response does not affect the resistance of animals to heat shock but eliminates the beneficial effects of hormetic heat stress. In summary, our work discovers that the RNA-binding protein ENDU-2 mediates the long-term impacts of transient heat stress via reprogramming transcriptome after stress exposure.


Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells.

  • Kathrin Thedieck‎ et al.
  • Cell‎
  • 2013‎

Mammalian target of rapamycin complex 1 (mTORC1) controls growth and survival in response to metabolic cues. Oxidative stress affects mTORC1 via inhibitory and stimulatory inputs. Whereas downregulation of TSC1-TSC2 activates mTORC1 upon oxidative stress, the molecular mechanism of mTORC1 inhibition remains unknown. Here, we identify astrin as an essential negative mTORC1 regulator in the cellular stress response. Upon stress, astrin inhibits mTORC1 association and recruits the mTORC1 component raptor to stress granules (SGs), thereby preventing mTORC1-hyperactivation-induced apoptosis. In turn, balanced mTORC1 activity enables expression of stress factors. By identifying astrin as a direct molecular link between mTORC1, SG assembly, and the stress response, we establish a unifying model of mTORC1 inhibition and activation upon stress. Importantly, we show that in cancer cells, apoptosis suppression during stress depends on astrin. Being frequently upregulated in tumors, astrin is a potential clinically relevant target to sensitize tumors to apoptosis.


Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans.

  • Shu Liu‎ et al.
  • PloS one‎
  • 2012‎

Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches.


Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response.

  • Eva D Runkel‎ et al.
  • PLoS genetics‎
  • 2013‎

Disturbance of cellular functions results in the activation of stress-signaling pathways that aim at restoring homeostasis. We performed a genome-wide screen to identify components of the signal transduction of the mitochondrial unfolded protein response (UPR(mt)) to a nuclear chaperone promoter. We used the ROS generating complex I inhibitor paraquat to induce the UPR(mt), and we employed RNAi exposure post-embryonically to allow testing genes whose knockdown results in embryonic lethality. We identified 54 novel regulators of the ROS-induced UPR(mt). Activation of the UPR(mt), but not of other stress-signaling pathways, failed when homeostasis of basic cellular mechanisms such as translation and protein transport were impaired. These mechanisms are monitored by a recently discovered surveillance system that interprets interruption of these processes as pathogen attack and depends on signaling through the JNK-like MAP-kinase KGB-1. Mutation of kgb-1 abrogated the inhibition of ROS-induced UPR(mt), suggesting that surveillance-activated defenses specifically inhibit the UPR(mt) but do not compromise activation of the heat shock response, the UPR of the endoplasmic reticulum, or the SKN-1/Nrf2 mediated response to cytosolic stress. In addition, we identified PIFK-1, the orthologue of the Drosophila PI 4-kinase four wheel drive (FWD), and found that it is the only known factor so far that is essential for the unfolded protein responses of both mitochondria and endoplasmic reticulum. This suggests that both UPRs may share a common membrane associated mechanism.


An optimized split-ubiquitin cDNA-library screening system to identify novel interactors of the human Frizzled 1 receptor.

  • Dietmar Dirnberger‎ et al.
  • Nucleic acids research‎
  • 2008‎

The yeast split-ubiquitin system has previously been shown to be suitable to detect protein interactions of membrane proteins and of transcription factors in vivo. Therefore, this technology complements the classical split-transcription factor based yeast two-hybrid system (Y2H). Success or failure of the Y2H depends primarily on the ability to avoid false-negative and false-positive hits that become a limiting factor for the value of the system, especially in large scale proteomic analyses. We provide here a systematic assessment of parameters to help improving the quality of split-ubiquitin cDNA-library screenings. We experimentally defined the optimal 5-fluoroorotic acid (5-FOA) concentration as a key parameter to increase the reproducibility of interactions and, at the same time, to keep non-specific background growth low. Furthermore, we show that the efficacy of the 5-FOA selection is modulated by the plating density of the yeast clones. Moreover, a reporter-specific class of false-positive hits was identified, and a simple phenotypic assay for efficient de-selection was developed. We demonstrate the application of this improved system to identify novel interacting proteins of the human Frizzled 1 receptor. We identified several novel interactors with components of the Wnt-Frizzled signalling pathways and discuss their potential roles as direct mediators of Frizzled receptor signalling. The present work is the first example of a split-ubiquitin interaction screen using an in-situ expressed receptor of the serpentine class, emphasizing the suitability of the described improvements in the screening protocol.


The secreted endoribonuclease ENDU-2 from the soma protects germline immortality in C. elegans.

  • Wenjing Qi‎ et al.
  • Nature communications‎
  • 2021‎

Multicellular organisms coordinate tissue specific responses to environmental information via both cell-autonomous and non-autonomous mechanisms. In addition to secreted ligands, recent reports implicated release of small RNAs in regulating gene expression across tissue boundaries. Here, we show that the conserved poly-U specific endoribonuclease ENDU-2 in C. elegans is secreted from the soma and taken-up by the germline to ensure germline immortality at elevated temperature. ENDU-2 binds to mature mRNAs and negatively regulates mRNA abundance both in the soma and the germline. While ENDU-2 promotes RNA decay in the soma directly via its endoribonuclease activity, ENDU-2 prevents misexpression of soma-specific genes in the germline and preserves germline immortality independent of its RNA-cleavage activity. In summary, our results suggest that the secreted RNase ENDU-2 regulates gene expression across tissue boundaries in response to temperature alterations and contributes to maintenance of stem cell immortality, probably via retaining a stem cell specific program of gene expression.


G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling.

  • Mirja Tamara Prentzell‎ et al.
  • Cell‎
  • 2021‎

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: