Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 142 papers

Laparoscopic versus robotic-assisted sacrocolpopexy for pelvic organ prolapse: a systematic review.

  • Geertje Callewaert‎ et al.
  • Gynecological surgery‎
  • 2016‎

The use of robot-assisted surgery (RAS) has gained popularity in the field of gynaecology, including pelvic floor surgery. To assess the benefits of RAS, we conducted a systematic review of randomized controlled trials comparing laparoscopic and robotic-assisted sacrocolpopexy. The Cochrane Library (1970-January 2015), MEDLINE (1966 to January 2015), and EMBASE (1974 to January 2015) were searched, as well as ClinicalTrials.gov and the International Clinical Trials Registry Platform. We identified two randomized trials (n = 78) comparing laparoscopic with robotic sacrocolpopexy. The Paraiso 2011 study showed that laparoscopic was faster than robotic sacrocolpopexy (199 ± 46 vs. 265 ± 50 min; p < .001), yet in the ACCESS trial, no difference was present (225 ± 62.3 vs. 246.5 ± 51.3 min; p = .110). Costs for using the robot were significantly higher in both studies, however, in the ACCESS trial, only when purchase and maintenance of the robot was included (LSC US$11,573 ± 3191 vs. RASC US$19,616 ± 3135; p < .001). In the Paraiso study, RASC was more expensive even without considering those costs (LSC US$ 14,342 ± 2941 vs. RASC 16,278 ± 3326; p = 0.008). Pain was reportedly higher after RASC, although at different time points after the operation. There were no differences in anatomical outcomes, pelvic floor function, and quality of life. The experience with RASC was tenfold lower than that with LSC in both studies. The heterogeneity between the two studies precluded a meta-analysis. Based on small randomized studies, with surgeons less experienced in RAS than in laparoscopic surgery, robotic surgery significantly increases the cost of a laparoscopic sacrocolpopexy. RASC would be more sustainable if its costs would be lower. Though RASC may have other benefits, such as reduction of the learning curve and increased ergonomics or dexterity, these remain to be demonstrated.


Pulmonary transcriptome analysis in the surgically induced rabbit model of diaphragmatic hernia treated with fetal tracheal occlusion.

  • Alexander C Engels‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

Congenital diaphragmatic hernia (CDH) is a malformation leading to pulmonary hypoplasia, which can be treated in utero by fetal tracheal occlusion (TO). However, the changes of gene expression induced by TO remain largely unknown but could be used to further improve the clinically used prenatal treatment of this devastating malformation. Therefore, we aimed to investigate the pulmonary transcriptome changes caused by surgical induction of diaphragmatic hernia (DH) and additional TO in the fetal rabbit model. Induction of DH was associated with 378 upregulated genes compared to controls when allowing a false-discovery rate (FDR) of 0.1 and a fold change (FC) of 2. Those genes were again downregulated by consecutive TO. But DH+TO was associated with an upregulation of 157 genes compared to DH and controls. When being compared to control lungs, 106 genes were downregulated in the DH group and were not changed by TO. Therefore, the overall pattern of gene expression in DH+TO is more similar to the control group than to the DH group. In this study, we further provide a database of gene expression changes induced by surgical creation of DH and consecutive TO in the rabbit model. Future treatment strategies could be developed using this dataset. We also discuss the most relevant genes that are involved in CDH.


Persistent Impact of In utero Irradiation on Mouse Brain Structure and Function Characterized by MR Imaging and Behavioral Analysis.

  • Tine Verreet‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2016‎

Prenatal irradiation is known to perturb brain development. Epidemiological studies revealed that radiation exposure during weeks 8-15 of pregnancy was associated with an increased occurrence of mental disability and microcephaly. Such neurological deficits were reproduced in animal models, in which rodent behavioral testing is an often used tool to evaluate radiation-induced defective brain functionality. However, up to now, animal studies suggested a threshold dose of around 0.30 Gray (Gy) below which no behavioral alterations can be observed, while human studies hinted at late defects after exposure to doses as low as 0.10 Gy. Here, we acutely irradiated pregnant mice at embryonic day 11 with doses ranging from 0.10 to 1.00 Gy. A thorough investigation of the dose-response relationship of altered brain function and architecture following in utero irradiation was achieved using a behavioral test battery and volumetric 3D T2-weighted magnetic resonance imaging (MRI). We found dose-dependent changes in cage activity, social behavior, anxiety-related exploration, and spatio-cognitive performance. Although behavioral alterations in low-dose exposed animals were mild, we did unveil that both emotionality and higher cognitive abilities were affected in mice exposed to ≥0.10 Gy. Microcephaly was apparent from 0.33 Gy onwards and accompanied by deviations in regional brain volumes as compared to controls. Of note, total brain volume and the relative volume of the ventricles, frontal and posterior cerebral cortex, cerebellum, and striatum were most strongly correlated to altered behavioral parameters. Taken together, we present conclusive evidence for persistent low-dose effects after prenatal irradiation in mice and provide a better understanding of the correlation between their brain size and performance in behavioral tests.


Expression of a Distinct Set of Chemokine Receptors in Adipose Tissue-Derived Stem Cells is Responsible for In Vitro Migration Toward Chemokines Appearing in the Major Pelvic Ganglion Following Cavernous Nerve Injury.

  • Maarten Albersen‎ et al.
  • Sexual medicine‎
  • 2013‎

Adipose tissue-derived stem cells (ADSCs) herald tremendous promise for clinical application in a wide range of injuries and diseases. Several preclinical reports demonstrate their efficacy in the treatment of cavernous nerve (CN) injury-induced erectile dysfunction in rats. It was recently illustrated that these effects were established as a result of ADSC migration to the major pelvic ganglion (MPG) where these cells induced neuroregeneration in loco.


Biomechanical Behaviour and Biocompatibility of Ureidopyrimidinone-Polycarbonate Electrospun and Polypropylene Meshes in a Hernia Repair in Rabbits.

  • Marina Gabriela M C Mori da Cunha‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2019‎

Although mesh use has significantly improved the outcomes of hernia and pelvic organ prolapse repair, long-term recurrence rates remain unacceptably high. We aim to determine the in vivo degradation and functional outcome of reconstructed abdominal wall defects, using slowly degradable electrospun ureidopyrimidinone moieties incorporated into a polycarbonate backbone (UPy-PC) implant compared to an ultra-lightweight polypropylene (PP) textile mesh with high pore stability. Twenty four New-Zealand rabbits were implanted with UPy-PC or PP to either reinforce a primary fascial defect repair or to cover (referred to as gap bridging) a full-thickness abdominal wall defect. Explants were harvested at 30, 90 and 180 days. The primary outcome measure was uniaxial tensiometry. Secondary outcomes were the recurrence of herniation, morphometry for musculofascial tissue characteristics, inflammatory response and neovascularization. PP explants compromised physiological abdominal wall compliance from 90 days onwards and UPy-PC from 180 days. UPy-PC meshes induced a more vigorous inflammatory response than PP at all time points. We observed progressively more signs of muscle atrophy and intramuscular fatty infiltration in the entire explant area for both mesh types. UPy-PC implants are replaced by a connective tissue stiff enough to prevent abdominal wall herniation in two-thirds of the gap-bridged full-thickness abdominal wall defects. However, in one-third there was sub-clinical herniation. The novel electrospun material did slightly better than the textile PP yet outcomes were still suboptimal. Further research should investigate what drives muscular atrophy, and whether novel polymers would eventually generate a physiological neotissue and can prevent failure and/or avoid collateral damage.


Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia.

  • Bárbara Argibay‎ et al.
  • Scientific reports‎
  • 2017‎

Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke.


Retrieval and registration of long-range overlapping frames for scalable mosaicking of in vivo fetoscopy.

  • Loïc Peter‎ et al.
  • International journal of computer assisted radiology and surgery‎
  • 2018‎

The standard clinical treatment of Twin-to-Twin transfusion syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired.


Exploring theranostic potentials of radioiodinated hypericin in rodent necrosis models.

  • Junjie Li‎ et al.
  • Theranostics‎
  • 2012‎

The present animal experiments were conducted to evaluate radioiodinated Hypericin (Hyp) for its regional distribution as well as theranostic potentials.


Early decrease of type 1 cannabinoid receptor binding and phosphodiesterase 10A activity in vivo in R6/2 Huntington mice.

  • Maarten Ooms‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Several lines of evidence imply early alterations in endocannabinoid and phosphodiesterase 10A (PDE10A) signaling in Huntington disease (HD). Using [(18)F]MK-9470 and [(18)F]JNJ42259152 small-animal positron emission tomography (PET), we investigated for the first time cerebral changes in type 1 cannabinoid (CB1) receptor binding and PDE10A levels in vivo in presymptomatic, early symptomatic, and late symptomatic HD (R6/2) mice, in relation to glucose metabolism ([(18)F]FDG PET), brain morphology (magnetic resonance imaging) and motor function. Ten R6/2 and 16 wild-type (WT) mice were investigated at 3 different time points between the age of 4 and 13 weeks. Parametric CB1 receptor and PDE10A images were anatomically standardized to Paxinos space and analyzed voxelwise. Volumetric microMRI imaging was performed to assess HD pathology. In R6/2 mice, CB1 receptor binding was decreased in comparison with WT in a cluster comprising the bilateral caudate-putamen, globus pallidus, and thalamic nucleus at week 5 (-8.1% ± 2.6%, p = 1.7 × 10(-5)). Longitudinal follow-up showed further progressive decline compared with controls in a cluster comprising the bilateral hippocampus, caudate-putamen, globus pallidus, superior colliculus, thalamic nucleus, and cerebellum (late vs. presymptomatic age: -13.7% ± 3.1% for R6/2 and +1.5% ± 4.0% for WT, p = 1.9 × 10(-5)). In R6/2 mice, PDE10A binding potential also decreased over time to reach significance at early and late symptomatic HD (late vs. presymptomatic age: -79.1% ± 1.9% for R6/2 and +2.1% ± 2.7% for WT, p = 1.5 × 10(-4)). The observed changes in CB1 receptor and PDE10A binding were correlated to anomalies exhibited by R6/2 animals in motor function, whereas no correlation was found with magnetic resonance imaging-based striatal volume. Our findings point to early regional dysfunctions in endocannabinoid and PDE10A signaling, involving the caudate-putamen and lateral globus pallidus, which may play a role in the progression of the disease in R6/2 animals. PET quantification of in vivo CB1 and/or PDE10A binding may thus be useful early biomarkers for HD. Our results also provide evidence of subtle motor deficits at earlier stages than previously described.


Twin-Twin Transfusion Syndrome: study protocol for developing, disseminating, and implementing a core outcome set.

  • Asma Khalil‎ et al.
  • Trials‎
  • 2017‎

Twin-Twin Transfusion Syndrome (TTTS) is associated with an increased risk of perinatal mortality and morbidity. Several treatment interventions have been described for TTTS, including fetoscopic laser surgery, amnioreduction, septostomy, expectant management, and pregnancy termination. Over the last decade, fetoscopic laser surgery has become the primary treatment. The literature to date reports on many different outcomes, making it difficult to compare results or combine data from individual studies, limiting the value of research to guide clinical practice. With the advent and ongoing development of new therapeutic techniques, this is more important than ever. The development and use of a core outcome set has been proposed to address these issues, prioritising outcomes important to the key stakeholders, including patients. We aim to produce, disseminate, and implement a core outcome set for TTTS.


No Functional Role for microRNA-342 in a Mouse Model of Pancreatic Acinar Carcinoma.

  • James Dooley‎ et al.
  • Frontiers in oncology‎
  • 2017‎

The intronic microRNA (miR)-342 has been proposed as a potent tumor-suppressor gene. miR-342 is found to be downregulated or epigenetically silenced in multiple different tumor sites, and this loss of expression permits the upregulation of several key oncogenic pathways. In several different cell lines, lower miR-342 expression results in enhanced proliferation and metastasis potential, both in vitro and in xenogenic transplant conditions. Here, we sought to determine the function of miR-342 in an in vivo spontaneous cancer model, using the Ela1-TAg transgenic model of pancreatic acinar carcinoma. Through longitudinal magnetic resonance imaging monitoring of Ela1-TAg transgenic mice, either wild-type or knockout for miR-342, we found no role for miR-342 in the development, growth rate, or pathogenicity of pancreatic acinar carcinoma. These results indicate the importance of assessing miR function in the complex physiology of in vivo model systems and indicate that further functional testing of miR-342 is required before concluding it is a bona fide tumor-suppressor-miR.


Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and ¹⁹F-MRI tracking of dendritic cells.

  • Heleen Dewitte‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2013‎

Perfluorocarbon (PFC) particles are currently on the rise as cell labeling agents for ¹⁹F-MRI tracking of dendritic cell (DC)-based vaccines. In this work, we design theranostic PFC particles for single-step loading of DCs with both antigenic protein and with a liquid PFC for ¹⁹F-MRI detection of the antigen-loaded cells. Upon addition to DCs in vitro, the antigen-loaded PFC particles are efficiently internalized, resulting in intracellular presence of up to 40 pmol ¹⁹F atoms per cell. At the same time, the DCs become loaded with antigenic proteins, that can be efficiently processed, without important effects on cell viability or altering the DC's phenotype and the cell's capacity to respond to danger signals. In addition, antigen-loaded PFC particle containing DCs are capable of inducing extensive proliferation of antigen-specific CD8⁺ T cells in vitro. Importantly, the antigen-coated PFC particles allow in vitro ¹⁹F-MRI-based detection of the antigen-containing DCs with detection limits as low as 10³ cells μl⁻¹. The dual-modality characteristics of the designed particles could assure that only those DCs that have taken up the antigen, and hence are responsible for an immune response, are traceable via ¹⁹F-MRI. Taken together, these novel dual-modality particles represent an interesting strategy in the development of a traceable DC vaccine.


Interplay between HIV entry and transportin-SR2 dependency.

  • Wannes Thys‎ et al.
  • Retrovirology‎
  • 2011‎

Transportin-SR2 (TRN-SR2, TNPO3, transportin 3) was previously identified as an interaction partner of human immunodeficiency virus type 1 (HIV-1) integrase and functions as a nuclear import factor of HIV-1. A possible role of capsid in transportin-SR2-mediated nuclear import was recently suggested by the findings that a chimeric HIV virus, carrying the murine leukemia virus (MLV) capsid and matrix proteins, displayed a transportin-SR2 independent phenotype, and that the HIV-1 N74D capsid mutant proved insensitive to transportin-SR2 knockdown.


In vivo imaging of inhibitory, GABAergic neurons by MRI.

  • Markus Aswendt‎ et al.
  • NeuroImage‎
  • 2012‎

The unambiguous detection of specific neuronal subtypes is up to now only possible with invasive techniques or optical imaging after genetic modification. High field magnetic resonance imaging (MRI) has the ability to visualize the brain structure and anatomy noninvasively, with high resolution--but missing the cell specific and functional information. Here we present a new tool for neuroimaging with MRI, enabling the selective detection of GABAergic neurons under in vivo conditions. The specific imaging contrast is achieved by a novel paramagnetic contrast agent, which responds to the activity of the enzyme glutamic acid decarboxylase--expressed solely by inhibitory neurons. The relaxivity of the complex is increased upon decarboxylation of two glutamic acid moieties, thus allowing increased water access to the inner and outer coordination spheres of the paramagnetic ion. The mechanism and specificity of activation were proven with tissue lysates and further applied to a differentiation protocol for murine embryonic stem cells. The relaxation enhancement was studied quantitatively and revealed decreased longitudinal relaxation times in the inhibitory neuron samples compared to the naïve stem cells in vitro and in vivo. Furthermore, this approach offers not only the discrimination of inhibitory, GABAergic neurons in the brain but also may expand the usefulness of MRI for functional imaging on a cellular level.


LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions.

  • Belete Ayele Desimmie‎ et al.
  • Retrovirology‎
  • 2013‎

LEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN.


Concerning the timing of antibiotic administration in women undergoing caesarean section: a systematic review and meta-analysis.

  • Michael Heesen‎ et al.
  • BMJ open‎
  • 2013‎

To assess the effects on maternal infectious morbidity and neonatal outcomes of the timing of antibiotic prophylaxis in women undergoing caesarean section. A recent National Institute for Health and Clinical Excellence (NICE) guideline reported that antibiotic administration before skin incision reduces the risk of maternal infection; this recommendation was based on a meta-analysis, however one including trials that were not double blind and not including a trial published recently.


High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region.

  • Jan De Rijck‎ et al.
  • Nucleic acids research‎
  • 2010‎

Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a transcriptional coactivator involved in stress response, autoimmune disease, cancer and HIV replication. A fusion between the nuclear pore protein NUP98 and LEDGF/p75 has been found in human acute and chronic myeloid leukemia and association of LEDGF/p75 with mixed-lineage leukemia (MLL)/menin is critical for leukemic transformation. During lentiviral replication, LEDGF/p75 tethers the pre-integration complex to the host chromatin resulting in a bias of integration into active transcription units (TUs). The consensus function of LEDGF/p75 is tethering of cargos to chromatin. In this regard, we determined the LEDGF/p75 chromatin binding profile. To this purpose, we used DamID technology and focused on the highly annotated ENCODE (Encyclopedia of DNA Elements) regions. LEDGF/p75 primarily binds downstream of the transcription start site of active TUs in agreement with the enrichment of HIV-1 integration sites at these locations. We show that LEDGF/p75 binding is not restricted to stress response elements in the genome, and correlation analysis with more than 200 genomic features revealed an association with active chromatin markers, such as H3 and H4 acetylation, H3K4 monomethylation and RNA polymerase II binding. Interestingly, some associations did not correlate with HIV-1 integration indicating that not all LEDGF/p75 complexes on the chromosome are amenable to HIV-1 integration.


miR-29a-deficiency does not modify the course of murine pancreatic acinar carcinoma.

  • James Dooley‎ et al.
  • Oncotarget‎
  • 2017‎

The development of cancers involves the complex dysregulation of multiple cellular processes. With key functions in simultaneous regulation of multiple pathways, microRNA (miR) are thought to have important roles in the oncogenic formation process. miR-29a is among the most abundantly expressed miR in the pancreas. Together with altered expression in pancreatic cancer cell lines and biopsies, and known oncogenic functions in leukemia, this expression data has identified miR-29a as a key candidate for miR involvement in pancreatic cancer biology. Here we used miR-29a-deficient mice and the TAg model of pancreatic acinar carcinoma to functionally test the role of miR-29a in vivo. We found no impact of miR-29a loss on the development or growth of pancreatic tumours, nor on the survival of tumour-bearing mice. These results suggest that, despite differential expression, miR-29a is oncogenically neutral in the pancreatic acinar carcinoma context. If these results are extended to other models of pancreatic cancer, they would reduce the attractiveness of miR-29a as a potential therapeutic target in pancreatic cancer.


A multidisciplinary approach unravels early and persistent effects of X-ray exposure at the onset of prenatal neurogenesis.

  • Tine Verreet‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2015‎

In humans, in utero exposure to ionising radiation results in an increased prevalence of neurological aberrations, such as small head size, mental retardation and decreased IQ levels. Yet, the association between early damaging events and long-term neuronal anomalies remains largely elusive.


PET imaging of TSPO in a rat model of local neuroinflammation induced by intracerebral injection of lipopolysaccharide.

  • Dieter Ory‎ et al.
  • Nuclear medicine and biology‎
  • 2015‎

The goal of this study was to measure functional and structural aspects of local neuroinflammation induced by intracerebral injection of lipopolysaccharide (LPS) in rats using TSPO microPET imaging with [(18)F]DPA-714, magnetic resonance imaging (MRI), in vitro autoradiography and immunohistochemistry (IHC) in order to characterize a small animal model for screening of new PET tracers targeting neuroinflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: