Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Soluble Epoxide Hydrolase Inhibition Prevents Experimental Type 4 Cardiorenal Syndrome.

  • Mouad Hamzaoui‎ et al.
  • Frontiers in molecular biosciences‎
  • 2020‎

Objectives: Cardiovascular diseases (CVD) remain the leading cause of morbimortality in patients with chronic kidney disease (CKD). The aim of this study was to assess the cardiovascular impact of the pharmacological inhibition of soluble epoxide hydrolase (sEH), which metabolizes the endothelium-derived vasodilatory and anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acid (DHETs), in the 5/6 nephrectomy (Nx) mouse model. Methods and Results: Compared to sham-operated mice, there was decrease in EET-to-DHET ratio 3 months after surgery in vehicle-treated Nx mice but not in mice treated with the sEH inhibitor t-AUCB. Nx induced an increase in plasma creatinine and in urine albumin-to-creatinine ratio as well as the development of kidney histological lesions, all of which were not modified by t-AUCB. In addition, t-AUCB did not oppose Nx-induced blood pressure increase. However, t-AUCB prevented the development of cardiac hypertrophy and fibrosis induced by Nx, as well as normalized the echocardiographic indices of diastolic and systolic function. Moreover, the reduction in endothelium-dependent flow-mediated dilatation of isolated mesenteric arteries induced by Nx was blunted by t-AUCB without change in endothelium-independent dilatation to sodium nitroprusside. Conclusion: Inhibition of sEH reduces the cardiac remodelling, and the diastolic and systolic dysfunctions associated with CKD. These beneficial effects may be mediated by the prevention of endothelial dysfunction, independent from kidney preservation and antihypertensor effect. Thus, inhibition of sEH holds a therapeutic potential in preventing type 4 cardiorenal syndrome.


Inhibition of Soluble Epoxide Hydrolase Does Not Promote or Aggravate Pulmonary Hypertension in Rats.

  • Matthieu Leuillier‎ et al.
  • Cells‎
  • 2023‎

Inhibitors of soluble epoxide hydrolase (sEH), which catalyzes the hydrolysis of various natural epoxides to their corresponding diols, present an opportunity for developing oral drugs for a range of human cardiovascular and inflammatory diseases, including, among others, diabetes and neuropathic pain. However, some evidence suggests that their administration may precipitate the development of pulmonary hypertension (PH). We thus evaluated the impact of chronic oral administration of the sEH inhibitor TPPU (N-[1-(1-Oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea) on hemodynamics, pulmonary vascular reactivity, and remodeling, as well as on right ventricular (RV) dimension and function at baseline and in the Sugen (SU5416) + hypoxia (SuHx) rat model of severe PH. Treatment with TPPU started 5 weeks after SU5416 injection for 3 weeks. No differences regarding the increase in pulmonary vascular resistance, remodeling, and inflammation, nor the abolishment of phenylephrine-induced pulmonary artery constriction, were noted in SuHx rats. In addition, TPPU did not modify the development of RV dysfunction, hypertrophy, and fibrosis in SuHx rats. Similarly, none of these parameters were affected by TPPU in normoxic rats. Complementary in vitro data demonstrated that TPPU reduced the proliferation of cultured human pulmonary artery-smooth muscle cells (PA-SMCs). This study demonstrates that inhibition of sEH does not induce nor aggravate the development of PH and RV dysfunction in SuHx rats. In contrast, a potential beneficial effect against pulmonary artery remodeling in humans is suggested.


Subtotal Nephrectomy Associated with a High-Phosphate Diet in Rats Mimics the Development of Calcified Aortic Valve Disease Associated with Chronic Renal Failure.

  • Hind Messaoudi‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

Introduction. This study addressed the hypothesis that subtotal nephrectomy associated with a high-phosphorus diet (5/6Nx + P) in rats represents a suitable animal model to mimic the cardiovascular consequences of chronic kidney disease (CKD) including calcified aortic valve disease (CAVD). Indeed, the latter contributes to the high morbidity and mortality of CKD patients and sorely lacks preclinical models for pathophysiological and pharmacological studies. Methods. Renal and cardiovascular function and structure were compared between sham-operated and 5/6 Nx rats + P 10 to 12 weeks after surgery. Results. As expected, 11 weeks after surgery, 5/6Nx + P rats developed CKD as demonstrated by their increase in plasma creatinine and urea nitrogen and decrease in glomerular filtration rate, estimated by using fluorescein-isothiocyanate-labelled sinistrin, anemia, polyuria, and polydipsia compared to sham-operated animals on a normal-phosphorus diet. At the vascular level, 5/6Nx + P rats had an increase in the calcium content of the aorta; a decrease in mesenteric artery dilatation in response to a stepwise increase in flow, illustrating the vascular dysfunction; and an increase in blood pressure. Moreover, immunohistology showed a marked deposition of hydroxyapatite crystals in the aortic valve of 5/6Nx + P rats. Echocardiography demonstrated that this was associated with a decrease in aortic valve cusp separation and an increase in aortic valve mean pressure gradient and in peak aortic valve velocity. Left-ventricular diastolic and systolic dysfunction as well as fibrosis were also present in 5/6Nx + P rats. Conclusion. This study demonstrates that 5/6Nx + P recapitulates the cardiovascular consequences observed in humans with CKD. In particular, the initiation of CAVD was shown, highlighting the interest of this animal model to study the mechanisms involved in the development of aortic stenosis and test new therapeutic strategies at an early stage of the disease.


Preservation of epoxyeicosatrienoic acid bioavailability prevents renal allograft dysfunction and cardiovascular alterations in kidney transplant recipients.

  • Thomas Duflot‎ et al.
  • Scientific reports‎
  • 2021‎

This study addressed the hypothesis that epoxyeicosatrienoic acids (EETs) synthesized by CYP450 and catabolized by soluble epoxide hydrolase (sEH) are involved in the maintenance of renal allograft function, either directly or through modulation of cardiovascular function. The impact of single nucleotide polymorphisms (SNPs) in the sEH gene EPHX2 and CYP450 on renal and vascular function, plasma levels of EETs and peripheral blood monuclear cell sEH activity was assessed in 79 kidney transplant recipients explored at least one year after transplantation. Additional experiments in a mouse model mimicking the ischemia-reperfusion (I/R) injury suffered by the transplanted kidney evaluated the cardiovascular and renal effects of the sEH inhibitor t-AUCB administered in drinking water (10 mg/l) during 28 days after surgery. There was a long-term protective effect of the sEH SNP rs6558004, which increased EET plasma levels, on renal allograft function and a deleterious effect of K55R, which increased sEH activity. Surprisingly, the loss-of-function CYP2C9*3 was associated with a better renal function without affecting EET levels. R287Q SNP, which decreased sEH activity, was protective against vascular dysfunction while CYP2C8*3 and 2C9*2 loss-of-function SNP, altered endothelial function by reducing flow-induced EET release. In I/R mice, sEH inhibition reduced kidney lesions, prevented cardiac fibrosis and dysfunction as well as preserved endothelial function. The preservation of EET bioavailability may prevent allograft dysfunction and improve cardiovascular disease in kidney transplant recipients. Inhibition of sEH appears thus as a novel therapeutic option but its impact on other epoxyfatty acids should be carefully evaluated.


5/6 nephrectomy induces different renal, cardiac and vascular consequences in 129/Sv and C57BL/6JRj mice.

  • Mouad Hamzaoui‎ et al.
  • Scientific reports‎
  • 2020‎

Experimental models of cardiovascular diseases largely depend on the genetic background. Subtotal 5/6 nephrectomy (5/6 Nx) is the most frequently used model of chronic kidney disease (CKD) in rodents. However, in mice, cardiovascular consequences of 5/6 Nx are rarely reported in details and comparative results between strains are scarce. The present study detailed and compared the outcomes of 5/6 Nx in the 2 main strains of mice used in cardiovascular and kidney research, 129/Sv and C57BL/6JRj. Twelve weeks after 5/6 Nx, CKD was demonstrated by a significant increase in plasma creatinine in both 129/Sv and C57BL/6JRj male mice. Polyuria and kidney histological lesions were more pronounced in 129/Sv than in C57BL/6JRj mice. Increase in albuminuria was significant in 129/Sv but not in C57BL/6JRj mice. Both strains exhibited an increase in systolic blood pressure after 8 weeks associated with decreases in cardiac systolic and diastolic function. Heart weight increased significantly only in 129/Sv mice. Endothelium-dependent mesenteric artery relaxation to acetylcholine was altered after 5/6 Nx in C57BL/6JRj mice. Marked reduction of endothelium-dependent vasodilation to increased intraluminal flow was demonstrated in both strains after 5/6 Nx. Cardiovascular and kidney consequences of 5/6 Nx were more pronounced in 129/Sv than in C57BL/6JRj mice.


Priming of Cardiopulmonary Bypass with Human Albumin Decreases Endothelial Dysfunction after Pulmonary Ischemia-Reperfusion in an Animal Model.

  • Jean Selim‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The routine use of mechanical circulatory support during lung transplantation (LTx) is still controversial. The use of prophylactic human albumin (HA) or hypertonic sodium lactate (HSL) prime in mechanical circulatory support during LTx could prevent ischemia−reperfusion (IR) injuries and pulmonary endothelial dysfunction and thus prevent the development of pulmonary graft dysfunction. The objective was to investigate the impact of cardiopulmonary bypass (CPB) priming with HA and HSL compared to a CPB prime with Gelofusine (GF) on pulmonary endothelial dysfunction in a lung IR rat model. Rats were assigned to four groups: IR-CPB-GF group, IR-CPB-HA group, IR-CPB-HSL group and a sham group. The study of pulmonary vascular reactivity by wire myograph was the primary outcome. Glycocalyx degradation (syndecan-1 and heparan) was also assessed by ELISA and electron microscopy, systemic and pulmonary inflammation by ELISA (IL-1β, IL-10, and TNF-α) and immunohistochemistry. Clinical parameters were evaluated. We employed a CPB model with three different primings, permitting femoral−femoral assistance with left pulmonary hilum ischemia for IR. Pulmonary endothelium-dependent relaxation to acetylcholine was significantly decreased in the IR-CPB-GF group (11.9 ± 6.2%) compared to the IR-CPB-HA group (52.8 ± 5.2%, p < 0.0001), the IR-CPB-HSL group (57.7 ± 6.3%, p < 0.0001) and the sham group (80.8 ± 6.5%, p < 0.0001). We did not observe any difference between the groups concerning glycocalyx degradation, and systemic or tissular inflammation. The IR-CPB-HSL group needed more vascular filling and developed significantly more pulmonary edema than the IR-CPB-GF group and the IR-CPB-HA group. Using HA as a prime in CPB during Ltx could decrease pulmonary endothelial dysfunction’s IR-mediated effects. No effects of HA were found on inflammation.


Adaptation of Arterial Wall Viscosity to the Short-Term Reduction of Heart Rate: Impact of Aging.

  • Frédéric Roca‎ et al.
  • Journal of the American Heart Association‎
  • 2022‎

Background Changes in arterial wall viscosity, which dissipates the energy stored within the arterial wall, may contribute to the beneficial effect of heart rate (HR) reduction on arterial stiffness and cardiovascular coupling. However, it has never been assessed in humans and could be altered by aging. We evaluated the effect of a selective HR-lowering agent on carotid arterial wall viscosity and the impact of aging on this effect. Methods and Results This randomized, placebo-controlled, double-blind, crossover study performed in 19 healthy volunteers evaluated the effects of ivabradine (5 mg BID, 1-week) on carotid arterial wall viscosity, mechanics, hemodynamics, and cardiovascular coupling. Arterial wall viscosity was evaluated by the area of the hysteresis loop of the pressure-lumen cross-sectional area relationship, representing the energy dissipated (WV), and by the relative viscosity (WV/WE), with WE representing the elastic energy stored. HR reduction by ivabradine increased WV and WE whereas WV/WE remained stable. In middle-aged subjects (n=11), baseline arterial stiffness and cardiovascular coupling were less favorable, and WE was similar but WV and therefore WV/WE were lower than in youth (n=8). HR reduction increased WV/WE in middle-aged but not in young subjects, owing to a larger increase in WV than WE. These results were supported by the age-related linear increase in WV/WE after HR reduction (P=0.009), explained by a linear increase in WV. Conclusion HR reduction increases arterial wall energy dissipation proportionally to the increase in WE, suggesting an adaptive process to bradycardia. This mechanism is altered during aging resulting in a larger than expected energy dissipation, the impact of which should be assessed. Registration URL: https://www.clinicaltrials.gov; Unique identifier: 2015/077/HP. URL: https://www. eudract.ema.europa.eu; Unique identifier: 2015-002060-17.


Preventing the Increase in Lysophosphatidic Acids: A New Therapeutic Target in Pulmonary Hypertension?

  • Thomas Duflot‎ et al.
  • Metabolites‎
  • 2021‎

Cardiovascular diseases (CVD) are the leading cause of premature death and disability in humans that are closely related to lipid metabolism and signaling. This study aimed to assess whether circulating lysophospholipids (LPL), lysophosphatidic acids (LPA) and monoacylglycerols (MAG) may be considered as potential therapeutic targets in CVD. For this objective, plasma levels of 22 compounds (13 LPL, 6 LPA and 3 MAG) were monitored by liquid chromatography coupled with tandem mass spectrometry (HPLC/MS2) in different rat models of CVD, i.e., angiotensin-II-induced hypertension (HTN), ischemic chronic heart failure (CHF) and sugen/hypoxia(SuHx)-induced pulmonary hypertension (PH). On one hand, there were modest changes on the monitored compounds in HTN (LPA 16:0, 18:1 and 20:4, LPC 16:1) and CHF (LPA 16:0, LPC 18:1 and LPE 16:0 and 18:0) models compared to control rats but these changes were no longer significant after multiple testing corrections. On the other hand, PH was associated with important changes in plasma LPA with a significant increase in LPA 16:0, 18:1, 18:2, 20:4 and 22:6 species. A deleterious impact of LPA was confirmed on cultured human pulmonary smooth muscle cells (PA-SMCs) with an increase in their proliferation. Finally, plasma level of LPA(16:0) was positively associated with the increase in pulmonary artery systolic pressure in patients with cardiac dysfunction. This study demonstrates that circulating LPA may contribute to the pathophysiology of PH. Additional experiments are needed to assess whether the modulation of LPA signaling in PH may be of interest.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: