Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

  • Carolin Schwafertz‎ et al.
  • Molecular and cellular endocrinology‎
  • 2017‎

Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.


Endothelial factors mediate aldosterone release via PKA-independent pathways.

  • Ishrath Ansurudeen‎ et al.
  • Molecular and cellular endocrinology‎
  • 2009‎

Aldosterone synthesis is primarily regulated by angiotensin II and potassium ions. In addition, endothelial cell-secreted factors have been shown to regulate mineralocorticoid release. We analyzed the pathways that mediate endothelial cell-factor-induced aldosterone release from adrenocortical cells, NCI-H295R using endothelial cell-conditioned medium (ECM). The cAMP antagonist Rp-cAMP caused a 44% decrease in the ECM-induced aldosterone release but inhibition of cAMP-dependent PKA had no effect on aldosterone release. Interestingly, inhibition of cAMP-regulated guanine nucleotide exchange factor Epac with brefeldin-A decreased the ECM-induced aldosterone release by 45%. Similarly, inhibition of p38 MAP-kinase; PI-3-kinase and PKB significantly reduced the ECM-induced aldosterone release whereas inhibition of ERK1/2 and PKC did not decrease aldosterone release. These results provide evidence for the existence of a cAMP-dependent but PKA-independent pathway in mediating the ECM-induced aldosterone release and the significant influence of more than one signaling mechanism.


Endothelial cell-mediated regulation of aldosterone release from human adrenocortical cells.

  • Ishrath Ansurudeen‎ et al.
  • Molecular and cellular endocrinology‎
  • 2007‎

Endothelial cells play an important role in the development and functioning of endocrine tissue and endothelial cell-derived factors have been shown to regulate mineralocorticoid release in bovine adrenal cells. In the present study, we analysed the role of human endothelial cells in the synthesis and release of aldosterone from adrenocortical cells (NCI-H295R). Endothelial cell-induced aldosterone release was rapid and lasted as a long-term effect over a period of 48 h. This stimulant effect was influenced by the duration of endothelial cell conditioning and decreased linearly with increasing dilutions of the conditioned medium. At the molecular level, an increase in the mRNA transcripts of aldosterone synthase and StAR could be observed. Cellular interaction with endothelial cell-factors enhanced the activation of CRE, and the promoter activity of both StAR and SF-1 reporter genes. In conclusion, human endothelial cells are important intra-adrenal regulators of human aldosterone synthesis and release.


L-Carnosine Stimulation of Coenzyme Q10 Biosynthesis Promotes Improved Mitochondrial Function and Decreases Hepatic Steatosis in Diabetic Conditions.

  • Cheng Schwank-Xu‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Mitochondrial dysfunction in type 2 diabetes leads to oxidative stress, which drives disease progression and diabetes complications. L-carnosine, an endogenous dipeptide, improves metabolic control, wound healing and kidney function in animal models of type 2 diabetes. Coenzyme Q (CoQ), a component of the mitochondrial electron transport chain, possesses similar protective effects on diabetes complications. We aimed to study the effect of carnosine on CoQ, and assess any synergistic effects of carnosine and CoQ on improved mitochondrial function in a mouse model of type 2 diabetes. Carnosine enhanced CoQ gene expression and increased hepatic CoQ biosynthesis in db/db mice, a type 2 diabetes model. Co-administration of Carnosine and CoQ improved mitochondrial function, lowered ROS formation and reduced signs of oxidative stress. Our work suggests that carnosine exerts beneficial effects on hepatic CoQ synthesis and when combined with CoQ, improves mitochondrial function and cellular redox balance in the liver of diabetic mice. (4) Conclusions: L-carnosine has beneficial effects on oxidative stress both alone and in combination with CoQ on hepatic mitochondrial function in an obese type 2 diabetes mouse model.


Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate.

  • Ileana Ruxandra Botusan‎ et al.
  • PloS one‎
  • 2018‎

IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: