Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells.

  • Catherine Tesnière‎ et al.
  • Molecular biology of the cell‎
  • 2018‎

Nitrogen replenishment of nitrogen-starved yeast cells resulted in substantial transcriptome changes. There was an unexplained rapid, transient down-regulation of glycolytic genes. This unexpected result prompted us to search for the factors controlling these changes, among which is the possible involvement of different nutrient-sensing pathways such as the TORC1 and cAMP/PKA pathways. To that end, the effects of various gene deletions or chemical blocking agents were tested by investigating the expression of PGK1, one of the glycolytic genes most affected after nitrogen replenishment. We report here that several factors affected glycolytic mRNA stability, among which were glucose sensing, protein elongation, nitrogen metabolism, and TOR signaling. Ammonium sensing was not involved in the response, but ammonium metabolism was required. Thus, our results suggest that, in the presence of glucose, carbon/nitrogen cross-talk is likely involved in the response to nitrogen upshift. Our data suggest that posttranscriptional control of glycolytic gene expression may be an important response to nitrogen replenishment.


Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication.

  • Jean-Luc Legras‎ et al.
  • Molecular biology and evolution‎
  • 2018‎

The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.


Relief from nitrogen starvation entails quick unexpected down-regulation of glycolytic/lipid metabolism genes in enological Saccharomyces cerevisiae.

  • Catherine Tesnière‎ et al.
  • PloS one‎
  • 2019‎

Nitrogen composition of the grape must has an impact on yeast growth and fermentation kinetics as well as on the organoleptic properties of the final product. In some technological processes, such as white wine/rosé winemaking, the yeast-assimilable nitrogen content is sometimes insufficient to cover yeast requirements, which can lead to slow or sluggish fermentations. Growth is nevertheless quickly restored upon relief from nutrient starvation, e.g. through the addition of ammonium nitrogen, allowing fermentation completion. The aim of this study was to determine how nitrogen repletion affected the transcriptional response of a Saccharomyces cerevisiae wine yeast strain, in particular within the first hour after nitrogen addition. We found almost 4800 genes induced or repressed, sometimes within minutes after nutrient changes. Some of these responses to nitrogen depended on the TOR pathway, which controls positively ribosomal protein genes, amino acid and purine biosynthesis or amino acid permease genes and negatively stress-response genes, and genes related to the retrograde response (RTG) specific to the tricarboxylic acid (TCA) cycle and nitrogen catabolite repression (NCR). Some unexpected transcriptional responses concerned all the glycolytic genes, carbohydrate metabolism and TCA cycle-related genes that were down-regulated, as well as genes from the lipid metabolism.


Genome-wide CRISPR Screen Reveals RAB10 as a Synthetic Lethal Gene in Colorectal and Pancreatic Cancers Carrying SMAD4 Loss.

  • Hélène Erasimus‎ et al.
  • Cancer research communications‎
  • 2023‎

The TGFβ signaling mediator SMAD4 is frequently mutated or deleted in colorectal and pancreatic cancers. SMAD4 acts as a tumor suppressor and its loss is associated with poorer patient outcomes. The purpose of this study was to find synthetic lethal interactions with SMAD4 deficiency to find novel therapeutic strategies for the treatment of patients with SMAD4-deficient colorectal or pancreatic cancers. Using pooled lentiviral single-guide RNA libraries, we conducted genome-wide loss-of-function screens in Cas9-expressing colorectal and pancreatic cancer cells harboring altered or wild-type SMAD4. The small GTPase protein RAB10 was identified and validated as a susceptibility gene in SMAD4-altered colorectal and pancreatic cancer cells. Rescue assays showed that RAB10 reintroduction reversed the antiproliferative effects of RAB10 knockout in SMAD4-negative cell lines. Further investigation is necessary to shed light on the mechanism by which RAB10 inhibition decreases cell proliferation of SMAD4-negative cells.


A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation.

  • Camille Duc‎ et al.
  • PloS one‎
  • 2017‎

Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.


Quantitative 13 C-isotope labelling-based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation.

  • Stéphanie Rollero‎ et al.
  • Microbial biotechnology‎
  • 2017‎

Nitrogen and lipids are key nutrients of grape must that influence the production of fermentative aromas by wine yeast, and we have previously shown that a strong interaction exists between these two nutrients. However, more than 90% of the acids and higher alcohols (and their acetate ester derivatives) were derived from intermediates produced by the carbon central metabolism (CCM). The objective of this study was to determine how variations in nitrogen and lipid resources can modulate the contribution of nitrogen and carbon metabolisms for the production of fermentative aromas. A quantitative analysis of metabolism using 13 C-labelled leucine and valine showed that nitrogen availability affected the part of the catabolism of N-containing compounds, the formation of α-ketoacids from CCM and the redistribution of fluxes around these precursors, explaining the optimum production of higher alcohols occurring at an intermediate nitrogen content. Moreover, nitrogen content modulated the total production of acids and higher alcohols differently, through variations in the redox state of cells. We also demonstrated that the phytosterol content, modifying the intracellular availability of acetyl-CoA, can influence the flux distribution, especially the formation of higher alcohols and the conversion of α-ketoisovalerate to α-ketoisocaproate.


Dealing with multi-source and multi-scale information in plant phenomics: the ontology-driven Phenotyping Hybrid Information System.

  • Pascal Neveu‎ et al.
  • The New phytologist‎
  • 2019‎

Phenomic datasets need to be accessible to the scientific community. Their reanalysis requires tracing relevant information on thousands of plants, sensors and events. The open-source Phenotyping Hybrid Information System (PHIS) is proposed for plant phenotyping experiments in various categories of installations (field, glasshouse). It unambiguously identifies all objects and traits in an experiment and establishes their relations via ontologies and semantics that apply to both field and controlled conditions. For instance, the genotype is declared for a plant or plot and is associated with all objects related to it. Events such as successive plant positions, anomalies and annotations are associated with objects so they can be easily retrieved. Its ontology-driven architecture is a powerful tool for integrating and managing data from multiple experiments and platforms, for creating relationships between objects and enriching datasets with knowledge and metadata. It interoperates with external resources via web services, thereby allowing data integration into other systems; for example, modelling platforms or external databases. It has the potential for rapid diffusion because of its ability to integrate, manage and visualize multi-source and multi-scale data, but also because it is based on 10 yr of trial and error in our groups.


Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach.

  • Chloé Ambroset‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2011‎

The genetic basis of the phenotypic diversity of yeast is still poorly understood. Wine yeast strains have specific abilities to grow and ferment under stressful conditions compared with other strains, but the genetic basis underlying these traits is unknown. Understanding how sequence variation influences such phenotypes is a major challenge to address adaptation mechanisms of wine yeast. We aimed to identify the genetic basis of fermentation traits and gain insight into their relationships with variations in gene expression among yeast strains. We combined fermentation trait QTL mapping and expression profiling of fermenting cells in a segregating population from a cross between a wine yeast derivative and a laboratory strain. We report the identification of QTL for various fermentation traits (fermentation rates, nitrogen utilization, metabolites production) as well as expression QTL (eQTL). We found that many transcripts mapped to several eQTL hotspots and that two of them overlapped with QTL for fermentation traits. A QTL controlling the maximal fermentation rate and nitrogen utilization overlapping with an eQTL hotspot was dissected. We functionally demonstrated that an allele of the ABZ1 gene, localized in the hotspot and involved in p-aminobenzoate biosynthesis, controls the fermentation rate through modulation of nitrogen utilization. Our data suggest that the laboratory strain harbors a defective ABZ1 allele, which triggers strong metabolic and physiological alterations responsible for the generation of the eQTL hotspot. They also suggest that a number of gene expression differences result from some alleles that trigger major physiological disturbances.


QTL mapping of modelled metabolic fluxes reveals gene variants impacting yeast central carbon metabolism.

  • Matthias Eder‎ et al.
  • Scientific reports‎
  • 2020‎

The yeast Saccharomyces cerevisiae is an attractive industrial microorganism for the production of foods and beverages as well as for various bulk and fine chemicals, such as biofuels or fragrances. Building blocks for these biosyntheses are intermediates of yeast central carbon metabolism (CCM), whose intracellular availability depends on balanced single reactions that form metabolic fluxes. Therefore, efficient product biosynthesis is influenced by the distribution of these fluxes. We recently demonstrated great variations in CCM fluxes between yeast strains of different origins. However, we have limited understanding of flux modulation and the genetic basis of flux variations. In this study, we investigated the potential of quantitative trait locus (QTL) mapping to elucidate genetic variations responsible for differences in metabolic flux distributions (fQTL). Intracellular metabolic fluxes were estimated by constraint-based modelling and used as quantitative phenotypes, and differences in fluxes were linked to genomic variations. Using this approach, we detected four fQTLs that influence metabolic pathways. The molecular dissection of these QTLs revealed two allelic gene variants, PDB1 and VID30, contributing to flux distribution. The elucidation of genetic determinants influencing metabolic fluxes, as reported here for the first time, creates new opportunities for the development of strains with optimized metabolite profiles for various applications.


QTL mapping of the production of wine aroma compounds by yeast.

  • Damien Steyer‎ et al.
  • BMC genomics‎
  • 2012‎

Wine aroma results from the combination of numerous volatile compounds, some produced by yeast and others produced in the grapes and further metabolized by yeast. However, little is known about the consequences of the genetic variation of yeast on the production of these volatile metabolites, or on the metabolic pathways involved in the metabolism of grape compounds. As a tool to decipher how wine aroma develops, we analyzed, under two experimental conditions, the production of 44 compounds by a population of 30 segregants from a cross between a laboratory strain and an industrial strain genotyped at high density.


A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation.

  • Magalie Celton‎ et al.
  • BMC genomics‎
  • 2012‎

Redox homeostasis is essential to sustain metabolism and growth. We recently reported that yeast cells meet a gradual increase in imposed NADPH demand by progressively increasing flux through the pentose phosphate (PP) and acetate pathways and by exchanging NADH for NADPH in the cytosol, via a transhydrogenase-like cycle. Here, we studied the mechanisms underlying this metabolic response, through a combination of gene expression profiling and analyses of extracellular and intracellular metabolites and 13 C-flux analysis.


Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins.

  • Inês Mendes‎ et al.
  • BMC genomics‎
  • 2017‎

During must fermentation thousands of volatile aroma compounds are formed, with higher alcohols, acetate esters and ethyl esters being the main aromatic compounds contributing to floral and fruity aromas. The action of yeast, in particular Saccharomyces cerevisiae, on the must components will build the architecture of the wine flavour and its fermentation bouquet. The objective of the present work was to better understand the molecular and metabolic bases of aroma production during a fermentation process. For such, comparative transcriptomic and metabolic analysis was performed at two time points (5 and 50 g/L of CO2 released) in fermentations conducted by four yeast strains from different origins and/or technological applications (cachaça, sake, wine, and laboratory), and multivariate factorial analyses were used to rationally identify new targets for improving aroma production.


Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks.

  • Christian Brion‎ et al.
  • BMC genomics‎
  • 2013‎

Variation of gene expression can lead to phenotypic variation and have therefore been assumed to contribute the diversity of wine yeast (Saccharomyces cerevisiae) properties. However, the molecular bases of this variation of gene expression are unknown. We addressed these questions by carrying out an integrated genetical-genomic study in fermentation conditions. We report here quantitative trait loci (QTL) mapping based on expression profiling in a segregating population generated by a cross between a derivative of the popular wine strain EC1118 and the laboratory strain S288c.


Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation.

  • Lucie Crépin‎ et al.
  • Microbial cell factories‎
  • 2014‎

Under N-limiting conditions, Saccharomyces cerevisiae strains display a substantial variability in their biomass yield from consumed nitrogen -in particular wine yeasts exhibit high growth abilities- that is correlated with their capacity to complete alcoholic fermentation, a trait of interest for fermented beverages industries. The aim of the present work was to assess the contribution of nitrogen availability to the strain-specific differences in the ability to efficiently use N-resource for growth and to identify the underlying mechanisms. We compared the profiles of assimilation of several nitrogen sources (mostly ammonium, glutamine, and arginine) for high and low biomass-producing strains in various conditions of nitrogen availability. We also analyzed the intracellular fate of nitrogen compounds.


Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression.

  • Christian Brion‎ et al.
  • BMC genomics‎
  • 2014‎

Thiamine availability is involved in glycolytic flux and fermentation efficiency. A deficiency of this vitamin may be responsible for sluggish fermentations in wine making. Therefore, both thiamine uptake and de novo synthesis could have key roles in fermentation processes. Thiamine biosynthesis is regulated in response to thiamine availability and is coordinated by the thiamine sensor Thi3p, which activates Pdc2p and Thi2p. We used a genetic approach to identify quantitative trait loci (QTLs) in wine yeast and we discovered that a set of thiamine genes displayed expression-QTL on a common locus, which contains the thiamine regulator THI3.


Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation.

  • Jessica Noble‎ et al.
  • Microbial cell factories‎
  • 2015‎

Wine yeasts can produce undesirable sulfur compounds during alcoholic fermentation, such as SO2 and H2S, in variable amounts depending mostly on the yeast strain but also on the conditions. However, although sulfur metabolism has been widely studied, some of the genetic determinants of differences in sulfite and/or sulfide production between wine yeast strains remain to be identified. In this study, we used an integrated approach to decipher the genetic determinants of variation in the production of undesirable sulfur compounds.


QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.

  • Matthias Eder‎ et al.
  • BMC genomics‎
  • 2018‎

The volatile metabolites produced by Saccharomyces cerevisiae during alcoholic fermentation, which are mainly esters, higher alcohols and organic acids, play a vital role in the quality and perception of fermented beverages, such as wine. Although the metabolic pathways and genes behind yeast fermentative aroma formation are well described, little is known about the genetic mechanisms underlying variations between strains in the production of these aroma compounds. To increase our knowledge about the links between genetic variation and volatile production, we performed quantitative trait locus (QTL) mapping using 130 F2-meiotic segregants from two S. cerevisiae wine strains. The segregants were individually genotyped by next-generation sequencing and separately phenotyped during wine fermentation.


Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain.

  • Stéphanie Rollero‎ et al.
  • Microbial cell factories‎
  • 2016‎

Fermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5.


A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling.

  • Claire Brice‎ et al.
  • BMC genomics‎
  • 2014‎

In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: