Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

The Spanish biology/disease initiative within the human proteome project: Application to rheumatic diseases.

  • Cristina Ruiz-Romero‎ et al.
  • Journal of proteomics‎
  • 2015‎

The Spanish Chromosome 16 consortium is integrated in the global initiative Human Proteome Project, which aims to develop an entire map of the proteins encoded following a gene-centric strategy (C-HPP) in order to make progress in the understanding of human biology in health and disease (B/D-HPP). Chromosome 16 contains many genes encoding proteins involved in the development of a broad range of diseases, which have a significant impact on the health care system. The Spanish HPP consortium has developed a B/D platform with five programs focused on selected medical areas: cancer, obesity, cardiovascular, infectious and rheumatic diseases. Each of these areas has a clinical leader associated to a proteomic investigator with the responsibility to get a comprehensive understanding of the proteins encoded by Chromosome 16 genes. Proteomics strategies have enabled great advances in the area of rheumatic diseases, particularly in osteoarthritis, with studies performed on joint cells, tissues and fluids.


Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties.

  • Valentina Calamia‎ et al.
  • Arthritis research & therapy‎
  • 2012‎

Chondroitin sulfate (CS) is a symptomatic slow-acting drug for osteoarthritis (OA) widely used in the clinic. The aim of this work is to find proteins whose secretion from cartilage cells under proinflammatory stimuli (IL-1β) is regulated by CS, employing a novel quantitative proteomic approach.


A lipidomic study on the regulation of inflammation and oxidative stress targeted by marine ω-3 PUFA and polyphenols in high-fat high-sucrose diets.

  • Gabriel Dasilva‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2017‎

The ability of polyphenols to ameliorate potential oxidative damage of ω-3 PUFAs when they are consumed together and then, to enhance their potentially individual effects on metabolic health is discussed through the modulation of fatty acids profiling and the production of lipid mediators. For that, the effects of the combined consumption of fish oils and grape seed procyanidins on the inflammatory response and redox unbalance triggered by high-fat high-sucrose (HFHS) diets were studied in an animal model of Wistar rats. A standard diet was used as control. Results suggested that fish oils produced a replacement of ω-6 by ω-3 PUFAs in membranes and tissues, and consequently they improved inflammatory and oxidative stress parameters: favored the activity of 12/15-lipoxygenases on ω-3 PUFAs, enhanced glutathione peroxidases activity, modulated proinflammatory lipid mediators synthesis through the cyclooxygenase (COX) pathways and down-regulated the synthesis de novo of ARA leaded by Δ5 desaturase. Although polyphenols exerted an antioxidative and antiinflammatory effect in the standard diet, they were less effective to reduce inflammation in the HFHS dietary model. Contrary to the effect observed in the standard diet, polyphenols up-regulated COX pathways toward ω-6 proinflammatory eicosanoids as PGE2 and 11-HETE and decreased the detoxification of ω-3 hydroperoxides in the HFHS diet. As a result, additive effects between fish oils and polyphenols were found in the standard diet in terms of reducing inflammation and oxidative stress. However, in the HFHS diets, fish oils seem to be the one responsible for the positive effects found in the combined group.


Effects of combined D-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet.

  • Mercè Hereu‎ et al.
  • Scientific reports‎
  • 2019‎

Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. Male Sprague Dawley (SD) rats were fed a standard diet, or a high-fat (HF) diet supplemented with D-fagomine, EPA/DHA 1:1, a combination of both, or neither, for 24 weeks. The variables measured were fasting glucose and glucose tolerance, plasma insulin, liver inflammation, fecal/cecal gut bacterial subgroups and short-chain fatty acids (SCFAs). The animals supplemented with D-fagomine alone and in combination with ω-3 PUFAs accumulated less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. The combined supplements attenuated the high-fat-induced incipient insulin resistance (IR), and liver inflammation, while increasing the cecal content, the Bacteroidetes:Firmicutes ratio and the populations of Bifidobacteriales. The functional effects of the combination of D-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic alterations induced by a high-fat diet are mainly those of D-fagomine complemented by the anti-inflammatory action of ω-3 PUFAs.


Molecular characterization of B-cell epitopes for the major fish allergen, parvalbumin, by shotgun proteomics, protein-based bioinformatics and IgE-reactive approaches.

  • Mónica Carrera‎ et al.
  • Journal of proteomics‎
  • 2019‎

Parvalbumins beta (β-PRVBs) are the main fish allergens. The only proven and effective treatment for this type of hypersensitivity is to consume a diet free of fish. We present the molecular characterization of B-cell epitopes by shotgun proteomics of different β-PRVBs combined with protein-based bioinformatics and IgE-reactive approaches. The final goal of this work is to identify potential peptide vaccine candidates for fish allergy. Purified β-PRVBs from the main fifteen different fish species that cause allergy were analyzed by shotgun proteomics. Identified β-PRVBs peptide sequences and ninety-eight β-PRVB protein sequences from UniProtKB were combined, aligned and analyzed to determine B-cell epitopes using the Kolaskar and Tongaonkar algorithm. The highest rated predicted B-cell peptide epitopes were evaluated by ELISA using the corresponding synthetic peptides and sera from healthy and fish allergic patients. A total of 35 peptides were identified as B-cell epitopes. The top B-cell peptide epitopes (LKLFLQV, ACAHLCK, FAVLVKQ and LFLQNFV) that may induce protective immune responses were selected as potential peptide vaccine candidates. The 3D model of these peptides were located in the surface of the protein. This study provides the global characterization of B-cell epitopes for all β-PRVBs sequences that will facilitate the design of new potential immunotherapies. SIGNIFICANCE: This work provides the global characterization of B-cell epitopes for all β-PRVBs sequences by Shotgun Proteomics combined with Protein-based Bioinformatics and IgE-reactive approaches. This study will increase our understanding of the molecular mechanisms whereby fish allergens elicit allergic reactions and will facilitate the design of new potential peptide vaccine candidates.


Cysteamine Eye Drops in Hyaluronic Acid Packaged in Innovative Single-Dose Systems: Stability and Ocular Biopermanence.

  • Ana Castro-Balado‎ et al.
  • Pharmaceutics‎
  • 2022‎

Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs causing, among other symptoms, severe ocular manifestations. Cysteamine eye drops are prepared in hospital pharmacy departments to facilitate access to treatment, for which vehicles that provide adequate biopermanence, as well as adaptable containers that maintain its stability, are required. Difficulties related to cysteamine preparation, as well as its tendency to oxidize to cystamine, show the importance of conducting rigorous galenic characterization studies. This work aims to develop and characterize an ophthalmic compounded formulation of cysteamine prepared with hyaluronic acid and packaged in innovative single-dose systems. For this task, the effect of different storage temperatures and the presence/absence of nitrogen on the physicochemical stability of the formulation and its packaging was studied in a scaled manner, until reaching the optimal storage conditions. The results showed that 0.55% cysteamine, prepared with hyaluronic acid and packaged in single-dose containers, is stable for 30 days when stored at -20 °C. In addition, opening vials every 4 h at room temperature after 30 days of freezing maintains the stability of the cysteamine formulation for up to 16 h. Moreover, ocular biopermanence studies were conducted using molecular imaging, concluding that the biopermanence offered by the vehicle is not affected by the freezing process, where a half-life of 31.11 min for a hyaluronic acid formulation stored for 30 days at -20 °C was obtained, compared with 14.63 min for 0.9% sodium chloride eye drops.


Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney.

  • Lucía Méndez‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2023‎

Obesity has been recognized as a major risk factor for chronic kidney disease, insulin resistance being an early common metabolic feature in patients suffering from this syndrome. This study aims to investigate the mechanism underlying the induction of kidney dysfunction and the concomitant onset of insulin resistance by long-term high-fat and sucrose diet feeding in Sprague Dawley rats. To achieve this goal, our study analyzed renal carbonylated protein patterns, ectopic lipid accumulation and fatty acid profiles and correlated them with biometrical and biochemical measurements and other body redox status parameters. Rats fed the obesogenic diet developed a prediabetic state and incipient kidney dysfunction manifested in increased plasma urea concentration and superior levels of renal fat deposition and protein carbonylation. An obesogenic diet increased renal fat by preferentially promoting the accumulation of saturated fat, arachidonic, and docosahexaenoic fatty acids while decreasing oleic acid. Renal lipotoxicity was accompanied by selectively higher carbonylation of proteins involved in the blood pH regulation, i.e., bicarbonate reclamation and synthesis, amino acid, and glucose metabolisms, directly related to the onset of insulin resistance. This study also tested the combination of antioxidant properties of fish oil with the anti-diabetic properties of buckwheat D-Fagomine to counteract diet-induced renal alterations. Results demonstrated that bioactive compounds combined attenuated lipotoxicity, induced more favorable lipid profiles and counteracted the excessive carbonylation of proteins associated with pH regulation in the kidneys, resulting in an inhibition of the progression of the prediabetes state and kidney disease.


Targeting Hepatic Protein Carbonylation and Oxidative Stress Occurring on Diet-Induced Metabolic Diseases through the Supplementation with Fish Oils.

  • Silvia Muñoz‎ et al.
  • Marine drugs‎
  • 2018‎

The present study addressed the ability of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFA), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), to ameliorate liver protein damage derived from oxidative stress and induced by consumption of high-caloric diets, typical of Westernized countries. The experimental design included an animal model of Sprague-Dawley rats fed high-fat high-sucrose (HFHS) diet supplemented with ω-3 EPA and DHA for a complete hepatic proteome analysis to map carbonylated proteins involved in specific metabolic pathways. Results showed that the intake of marine ω-3 PUFA through diet significantly decreased liver protein carbonylation caused by long-term HFHS consumption and increased antioxidant system. Fish oil modulated the carbonylation level of more than twenty liver proteins involved in critical metabolic pathways, including lipid metabolism (e.g., albumin), carbohydrate metabolism (e.g., pyruvate carboxylase), detoxification process (e.g., aldehyde dehydrogenase 2), urea cycle (e.g., carbamoyl-phosphate synthase), cytoskeleton dynamics (e.g., actin), or response to oxidative stress (e.g., catalase) among others, which might be under the control of diet marine ω-3 PUFA. In parallel, fish oil significantly changed the liver fatty acid profile given by the HFHS diet, resulting in a more anti-inflammatory phenotype. In conclusion, the present study highlights the significance of marine ω-3 PUFA intake for the health of rats fed a Westernized diet by describing several key metabolic pathways which are protected in liver.


Next-Generation Sequencing and Quantitative Proteomics of Hutchinson-Gilford progeria syndrome-derived cells point to a role of nucleotide metabolism in premature aging.

  • Jesús Mateos‎ et al.
  • PloS one‎
  • 2018‎

Hutchinson-Gilford progeria syndrome (HGPS) is a very rare fatal disease characterized for accelerated aging. Although the causal agent, a point mutation in LMNA gene, was identified more than a decade ago, the molecular mechanisms underlying HGPS are still not fully understood and, currently, there is no cure for the patients, which die at a mean age of thirteen. With the aim of unraveling non-previously altered molecular pathways in the premature aging process, human cell lines from HGPS patients and from healthy parental controls were studied in parallel using Next-Generation Sequencing (RNAseq) and High-Resolution Quantitative Proteomics (iTRAQ) techniques. After selection of significant proteins and transcripts and crosschecking of the results a small set of protein/transcript pairs were chosen for validation. One of those proteins, ribose-phosphate pyrophosphokinase 1 (PRPS1), is essential for nucleotide synthesis. PRPS1 loss-of-function mutants present lower levels of purine. PRPS1 protein and transcript levels are detected as significantly decreased in HGPS cell lines vs. healthy parental controls. This modulation was orthogonally confirmed by targeted techniques in cell lines and also in an animal model of Progeria, the ZMPSTE24 knock-out mouse. In addition, functional experiments through supplementation with S-adenosyl-methionine (SAMe), a metabolite that is an alternative source of purine, were done. Results indicate that SAMe has a positive effect in the proliferative capacity and reduces senescence-associated Beta-galactosidase staining of the HPGS cell lines. Altogether, our data suggests that nucleotide and, specifically, purine-metabolism, are altered in premature aging, opening a new window for the therapeutic treatment of the disease.


High-resolution quantitative proteomics applied to the study of the specific protein signature in the sputum and saliva of active tuberculosis patients and their infected and uninfected contacts.

  • Jesús Mateos‎ et al.
  • Journal of proteomics‎
  • 2019‎

Our goal was to establish panels of protein biomarkers that are characteristic of patients with microbiologically confirmed pulmonary tuberculosis (TB) and their contacts, including latent TB-infected (LTBI) and uninfected patients. Since the first pathogen-host contact occurs in the oral and nasal passages the saliva and sputum were chosen as the biological fluids to be studied. Quantitative shotgun proteomics was performed using a LTQ-Orbitrap-Elite platform. For active TB patients, both fluids exhibited a specific accumulation of proteins that were related to complement activation, inflammation and modulation of immune response. In the saliva of TB patients, a decrease of in proteins related to glucose and lipid metabolism was detected. In contrast, the sputum of uninfected contacts presented a specific proteomic signature that was composed of proteins involved in the perception of bitter taste, defense against pathogens and innate immune response, suggesting that those are key events during the initial entry of the pathogen in the host. SIGNIFICANCE: This is the first study to compare the saliva and sputum from active TB patients and their contacts. Our findings strongly suggest that TB patients show not only an activation of processes that are related to complement activation and modulation of inflammation but also an imbalance in carbohydrate and lipid metabolism. In addition, those individuals who do not get infected after direct exposure to the pathogen display a typical proteomic signature in the sputum, which is a reflection of the secretion from the nasal and oral mucosa, the first immunological barriers that M. tuberculosis encounters in the host. Thus, this result indicates the importance of the processes related to the innate immune response in fighting the initial events of the infection.


Combined Buckwheat d-Fagomine and Fish Omega-3 PUFAs Stabilize the Populations of Gut Prevotella and Bacteroides While Reducing Weight Gain in Rats.

  • Mercè Hereu‎ et al.
  • Nutrients‎
  • 2019‎

Some functional food components may help maintain homeostasis by promoting balanced gut microbiota. Here, we explore the possible complementary effects of d-fagomine and ω-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA 1:1) on putatively beneficial gut bacterial strains. Male Sprague-Dawley rats were supplemented with d-fagomine, ω-3 PUFAs, or both, for 23 weeks. Bacterial subgroups were evaluated in fecal DNA by quantitative real-time polymerase chain reaction (qRT-PCR) and short-chain fatty acids were determined by gas chromatography. We found that the populations of the genus Prevotella remained stable over time in animals supplemented with d-fagomine, independently of ω-3 PUFA supplementation. Animals in these groups gained less weight than controls and rats given only ω-3 PUFAs. d-Fagomine supplementation together with ω-3 PUFAs maintained the relative populations of Bacteroides. ω-3 PUFAs alone or combined with d-fagomine reduced the amount of acetic acid and total short-chain fatty acids in feces. The plasma levels of pro-inflammatory arachidonic acid derived metabolites, triglycerides and cholesterol were lower in both groups supplemented with ω-3 PUFAs. The d-fagomine and ω-3 PUFAs combination provided the functional benefits of each supplement. Notably, it helped stabilize populations of Prevotella in the rat intestinal tract while reducing weight gain and providing the anti-inflammatory and cardiovascular benefits of ω-3 PUFAs.


Quantitative proteomic analysis of host--pathogen interactions: a study of Acinetobacter baumannii responses to host airways.

  • Jose Antonio Méndez‎ et al.
  • BMC genomics‎
  • 2015‎

Acinetobacter baumannii is a major health problem. The most common infection caused by A. baumannii is hospital acquired pneumonia, and the associated mortality rate is approximately 50%. Neither in vivo nor ex vivo expression profiling has been performed at the proteomic or transcriptomic level for pneumonia caused by A. baumannii. In this study, we characterized the proteome of A. baumannii under conditions that simulate those found in the airways, to gain some insight into how A. baumannii adapts to the host and to improve knowledge about the pathogenesis and virulence of this bacterium. A clinical strain of A. baumannii was grown under different conditions: in the presence of bronchoalveolar lavage fluid from infected rats, of RAW 264.7 cells to simulate conditions in the respiratory tract and in control conditions. We used iTRAQ labelling and LC-MALDI-TOF/TOF to investigate how A. baumannii responds on exposure to macrophages/BALF.


Serum proteomics of active tuberculosis patients and contacts reveals unique processes activated during Mycobacterium tuberculosis infection.

  • Jesús Mateos‎ et al.
  • Scientific reports‎
  • 2020‎

Tuberculosis (TB) is the most lethal infection among infectious diseases. The specific aim of this study was to establish panels of serum protein biomarkers representative of active TB patients and their household contacts who were either infected (LTBI) or uninfected (EMI-TB Discovery Cohort, Pontevedra Region, Spain). A TMT (Tamdem mass tags) 10plex-based quantitative proteomics study was performed in quintuplicate containing a total of 15 individual serum samples per group. Peptides were analyzed in an LC-Orbitrap Elite platform, and raw data were processed using Proteome Discoverer 2.1. A total of 418 proteins were quantified. The specific protein signature of active TB patients was characterized by an accumulation of proteins related to complement activation, inflammation and modulation of immune response and also by a decrease of a small subset of proteins, including apolipoprotein A and serotransferrin, indicating the importance of lipid transport and iron assimilation in the progression of the disease. This signature was verified by the targeted measurement of selected candidates in a second cohort (EMI-TB Verification Cohort, Maputo Region, Mozambique) by ELISA and nephelometry techniques. These findings will aid our understanding of the complex metabolic processes associated with TB progression from LTBI to active disease.


Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum.

  • Francisco Moreno‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2024‎

The regular intake of diets high in saturated fat and sugars increases oxidative stress and has been linked to cognitive decline and premature brain aging. The cerebellum is highly vulnerable to oxidative stress and thus, obesogenic diets might be particularly detrimental to this tissue. However, the precise molecular mechanisms behind obesity-related brain damage are still not clear. Since protein carbonylation, a biomarker of oxidative stress, influences protein functions and is involved in metabolic control, the current investigation addressed the effect of long-term high-fat and high-sucrose diet intake on the cerebellum of Sprague-Dawley rats by deciphering the changes caused in the carbonylated proteome. The antioxidant effects of fish oil supplementation on cerebellar carbonylated proteins were also investigated. Lipid peroxidation products and carbonylated proteins were identified and quantified using immunoassays and 2D-LC-MS/MS in the cerebellum. After 21 weeks of nutritional intervention, the obesogenic diet selectively increased carbonylation of the proteins that participate in ATP homeostasis and glutamate metabolism in the cerebellum. Moreover, the data demonstrated that fish oil supplementation restrained carbonylation of the main protein targets oxidatively damaged by the obesogenic diet, and additionally protected against carbonylation of several other proteins involved in amino acid biosynthesis and neurotransmission. Therefore, dietary interventions with fish oils could help the cerebellum to be more resilient to oxidative damage. The results could shed some light on the effect of high-fat and high-sucrose diets on redox homeostasis in the cerebellum and boost the development of antioxidant-based nutritional interventions to improve cerebellum health.


Protective effect of the omega-3 polyunsaturated fatty acids: Eicosapentaenoic acid/Docosahexaenoic acid 1:1 ratio on cardiovascular disease risk markers in rats.

  • Laura Lluís‎ et al.
  • Lipids in health and disease‎
  • 2013‎

High consumption of fish carries a lower risk of cardiovascular disease as a consequence of dietary omega-3 long chain polyunsaturated fatty acid (n-3 PUFA; especially EPA and DHA) content. A controversy exists about the component/s responsible of these beneficial effects and, in consequence, which is the best proportion between both fatty acids. We sought to determine, in healthy Wistar rats, the proportions of EPA and DHA that would induce beneficial effects on biomarkers of oxidative stress, and cardiovascular disease risk.


Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome.

  • Núria Taltavull‎ et al.
  • Lipids in health and disease‎
  • 2014‎

Marine polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with improvement in the Metabolic Syndrome (MS). The aim of this study is to evaluate how three fish-oil diets with different eicosapentaenoic acid/docosahexaenoic acid ratios (EPA/DHA ratio) affect the histology of liver, kidney, adipose tissue and aorta in a preliminary morphological study. This work uses an animal model of metabolic syndrome in comparison with healthy animals in order to provide information about the best EPA:DHA ratio to prevent or to improve metabolic syndrome symptoms.


Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance.

  • Cristina Ruiz-Romero‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2009‎

Mitochondria are involved in many cellular processes; mitochondrial dysfunctions have been associated with apoptosis, aging, and a number of pathological conditions, including osteoarthritis (OA). Mitochondrial proteins are attractive targets for the study of metabolism of the chondrocyte, the unique cell type present in mature cartilage, and its role in tissue degradation. Using a proteomics approach based on two-dimensional DIGE and MALDI-TOF/TOF mass spectrometric identification of mitochondria- enriched protein fractions from human articular chondrocytes, we analyzed mitochondrial protein changes that are characteristic of OA chondrocytes. A total of 73 protein forms were unambiguously identified as significantly altered in OA; 23 of them have been previously described as mitochondrial. An extensive statistical and cluster analysis of the data revealed a mitochondrial protein profile characteristic for OA. This pattern includes alterations in energy production, maintenance of mitochondrial membrane integrity, and free radical detoxification. Real time PCR, Western blot, and immunohistofluorescence assays confirmed a significant decrease of the major mitochondrial antioxidant protein manganese-superoxide dismutase (SOD2) in the superficial layer of OA cartilage. As possible outputs for this antioxidant deficiency, we found an increase of intracellular reactive oxygen species generation in OA chondrocytes and also verified an OA-dependent increase in the mitochondrial tumor necrosis factor-alpha receptor-associated protein 1 (TRAP1), a chaperone with a reported reactive oxygen species antagonist role. Our results describe the differences between the mitochondrial protein profiles of normal and OA chondrocytes, demonstrating that mitochondrial dysregulation occurs in cartilage cells during OA and highlighting redox imbalance as a key factor in OA pathogenesis.


A Complex Proteomic Response of the Parasitic Nematode Anisakis simplex s.s. to Escherichia coliLipopolysaccharide.

  • Karol Mierzejewski‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2021‎

Helminths are masters at manipulating host's immune response. Especially, parasitic nematodes have evolved strategies that allow them to evade, suppress, or modulate host's immune response to persist and spread in the host's organism. While the immunomodulatory effects of nematodes on their hosts are studied with a great commitment, very little is known about nematodes' own immune system, immune response to their pathogens, and interactions between parasites and bacteria in the host's organism. To illustrate the response of the parasitic nematode Anisakis simplex s.s. during simulated interaction with Escherichia coli, different concentrations of lipopolysaccharide (LPS) were used, and the proteomic analysis with isobaric mass tags for relative and absolute quantification (tandem mass tag-based LC-MS/MS) was performed. In addition, gene expression and biochemical analyses of selected markers of oxidative stress were determined. The results revealed 1148 proteins in a group of which 115 were identified as differentially regulated proteins, for example, peroxiredoxin, thioredoxin, and macrophage migration inhibitory factor. Gene Ontology annotation and Reactome pathway analysis indicated that metabolic pathways related to catalytic activity, oxidation-reduction processes, antioxidant activity, response to stress, and innate immune system were the most common, in which differentially regulated proteins were involved. Further biochemical analyses let us confirm that the LPS induced the oxidative stress response, which plays a key role in the innate immunity of parasitic nematodes. Our findings, to our knowledge, indicate for the first time, the complexity of the interaction of parasitic nematode, A. simplex s.s. with bacterial LPS, which mimics the coexistence of helminth and gut bacteria in the host. The simulation of this crosstalk led us to conclude that the obtained results could be hugely valuable in the integrated systems biology approach to describe a relationship between parasite, host, and its commensal bacteria.


Comparative Study of Bioactive Lipid Extraction from Squid (Doryteuthis gahi) by-Products by Green Solvents.

  • Santiago P Aubourg‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2022‎

A novel approach of bioactive lipid extraction by different green solvents was carried out on squid (Doryteuthis gahi) by-products. By-products (viscera, heads, skin, tails, etc.), considered as a single product, were subjected to the following solvent systems: ethanol, acetone, ethyl acetate, 1/1 ethanol/acetone, 1/1 ethanol/ethyl acetate, and 1/1 acetone/ethyl acetate. Analyses carried out included lipid yield, lipid class content, and fatty acid (FA) composition. Results were compared to the lipid extract obtained by the traditional procedure (1/1 chloroform/methanol). Lipid yields obtained by green solvents led to a 33.4−73.2% recovery compared to traditional extraction; the highest values (p < 0.05) were obtained by ethanol-containing systems. Compared to the traditional procedure, ethanol systems showed an 85.8−90.3% recovery of phospholipid compounds and no differences (p > 0.05) in the ω3/ω6 ratio. Green-extracting systems led to higher average values for eicosapentaenoic acid content (15.66−18.56 g·100 g−1 total FAs) and polyene index (1.93−3.29) than chloroform/methanol extraction; differences were significant (p < 0.05) for systems including acetone and ethyl acetate. No differences (p > 0.05) were detected for docosahexaenoic acid content between the traditional procedure and green systems, with all values being included in the 31.12−32.61 g·100 g−1 total FA range. The suitability of EtOH-containing green systems for extraction of bioactive lipid compounds from squid by-products was concluded.


Nutritional and Healthy Value of Chemical Constituents Obtained from Patagonian Squid (Doryteuthis gahi) By-Products Captured at Different Seasons.

  • Santiago P Aubourg‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

This study focuses on the extraction of nutritional and healthy constituents of whole by-products resulting from the commercialisation of Patagonian squid (Doriteuthis gahi). By-products corresponding to squid individuals captured at different seasons were comparatively analysed for proximate composition, lipid classes content, fatty acid (FA) profile, and macroelement and trace element composition. As a result, moisture, lipid, protein, and ash values were included in the ranges 829.0-842.8, 17.5-21.8, 106.0-123.7, and 9.3-13.3 g·kg-1 by-products, respectively. Phospholipids showed to be the most abundant lipid class (359.2-463.5 g·kg-1 lipids), while triacylglycerols were only present in a 9.5-13.1 g·kg-1 lipids range. Valuable levels were detected for α-tocopherol (539.6-973.3 mg·kg-1 lipids), polyunsaturated fatty acids (PUFA; 50.5-52.6 g·100 g-1 FA), ω3 PUFA (47.0-48.6 g·100 g-1 FA), PUFA/saturated FA ratio (1.4-1.6), and ω3/ω6 ratio (12.1-13.4). Among macroelements, S, P, and Na showed to be more abundant than K, Mg, and Ca. Profitable levels of Co, Cu, Fe, Mn, Se, and Zn were detected in all kinds of individuals. In spite of content variations found as a result of the capture season of Patagonian squid individuals, whole by-products of this cephalopod species can be considered as a profitable source to provide the food and pharmaceutical industries with useful value-added constituents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: