Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Molecular characterization of B-cell epitopes for the major fish allergen, parvalbumin, by shotgun proteomics, protein-based bioinformatics and IgE-reactive approaches.

  • Mónica Carrera‎ et al.
  • Journal of proteomics‎
  • 2019‎

Parvalbumins beta (β-PRVBs) are the main fish allergens. The only proven and effective treatment for this type of hypersensitivity is to consume a diet free of fish. We present the molecular characterization of B-cell epitopes by shotgun proteomics of different β-PRVBs combined with protein-based bioinformatics and IgE-reactive approaches. The final goal of this work is to identify potential peptide vaccine candidates for fish allergy. Purified β-PRVBs from the main fifteen different fish species that cause allergy were analyzed by shotgun proteomics. Identified β-PRVBs peptide sequences and ninety-eight β-PRVB protein sequences from UniProtKB were combined, aligned and analyzed to determine B-cell epitopes using the Kolaskar and Tongaonkar algorithm. The highest rated predicted B-cell peptide epitopes were evaluated by ELISA using the corresponding synthetic peptides and sera from healthy and fish allergic patients. A total of 35 peptides were identified as B-cell epitopes. The top B-cell peptide epitopes (LKLFLQV, ACAHLCK, FAVLVKQ and LFLQNFV) that may induce protective immune responses were selected as potential peptide vaccine candidates. The 3D model of these peptides were located in the surface of the protein. This study provides the global characterization of B-cell epitopes for all β-PRVBs sequences that will facilitate the design of new potential immunotherapies. SIGNIFICANCE: This work provides the global characterization of B-cell epitopes for all β-PRVBs sequences by Shotgun Proteomics combined with Protein-based Bioinformatics and IgE-reactive approaches. This study will increase our understanding of the molecular mechanisms whereby fish allergens elicit allergic reactions and will facilitate the design of new potential peptide vaccine candidates.


A lipidomic study on the regulation of inflammation and oxidative stress targeted by marine ω-3 PUFA and polyphenols in high-fat high-sucrose diets.

  • Gabriel Dasilva‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2017‎

The ability of polyphenols to ameliorate potential oxidative damage of ω-3 PUFAs when they are consumed together and then, to enhance their potentially individual effects on metabolic health is discussed through the modulation of fatty acids profiling and the production of lipid mediators. For that, the effects of the combined consumption of fish oils and grape seed procyanidins on the inflammatory response and redox unbalance triggered by high-fat high-sucrose (HFHS) diets were studied in an animal model of Wistar rats. A standard diet was used as control. Results suggested that fish oils produced a replacement of ω-6 by ω-3 PUFAs in membranes and tissues, and consequently they improved inflammatory and oxidative stress parameters: favored the activity of 12/15-lipoxygenases on ω-3 PUFAs, enhanced glutathione peroxidases activity, modulated proinflammatory lipid mediators synthesis through the cyclooxygenase (COX) pathways and down-regulated the synthesis de novo of ARA leaded by Δ5 desaturase. Although polyphenols exerted an antioxidative and antiinflammatory effect in the standard diet, they were less effective to reduce inflammation in the HFHS dietary model. Contrary to the effect observed in the standard diet, polyphenols up-regulated COX pathways toward ω-6 proinflammatory eicosanoids as PGE2 and 11-HETE and decreased the detoxification of ω-3 hydroperoxides in the HFHS diet. As a result, additive effects between fish oils and polyphenols were found in the standard diet in terms of reducing inflammation and oxidative stress. However, in the HFHS diets, fish oils seem to be the one responsible for the positive effects found in the combined group.


Effects of combined D-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet.

  • Mercè Hereu‎ et al.
  • Scientific reports‎
  • 2019‎

Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. Male Sprague Dawley (SD) rats were fed a standard diet, or a high-fat (HF) diet supplemented with D-fagomine, EPA/DHA 1:1, a combination of both, or neither, for 24 weeks. The variables measured were fasting glucose and glucose tolerance, plasma insulin, liver inflammation, fecal/cecal gut bacterial subgroups and short-chain fatty acids (SCFAs). The animals supplemented with D-fagomine alone and in combination with ω-3 PUFAs accumulated less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. The combined supplements attenuated the high-fat-induced incipient insulin resistance (IR), and liver inflammation, while increasing the cecal content, the Bacteroidetes:Firmicutes ratio and the populations of Bifidobacteriales. The functional effects of the combination of D-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic alterations induced by a high-fat diet are mainly those of D-fagomine complemented by the anti-inflammatory action of ω-3 PUFAs.


Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney.

  • Lucía Méndez‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2023‎

Obesity has been recognized as a major risk factor for chronic kidney disease, insulin resistance being an early common metabolic feature in patients suffering from this syndrome. This study aims to investigate the mechanism underlying the induction of kidney dysfunction and the concomitant onset of insulin resistance by long-term high-fat and sucrose diet feeding in Sprague Dawley rats. To achieve this goal, our study analyzed renal carbonylated protein patterns, ectopic lipid accumulation and fatty acid profiles and correlated them with biometrical and biochemical measurements and other body redox status parameters. Rats fed the obesogenic diet developed a prediabetic state and incipient kidney dysfunction manifested in increased plasma urea concentration and superior levels of renal fat deposition and protein carbonylation. An obesogenic diet increased renal fat by preferentially promoting the accumulation of saturated fat, arachidonic, and docosahexaenoic fatty acids while decreasing oleic acid. Renal lipotoxicity was accompanied by selectively higher carbonylation of proteins involved in the blood pH regulation, i.e., bicarbonate reclamation and synthesis, amino acid, and glucose metabolisms, directly related to the onset of insulin resistance. This study also tested the combination of antioxidant properties of fish oil with the anti-diabetic properties of buckwheat D-Fagomine to counteract diet-induced renal alterations. Results demonstrated that bioactive compounds combined attenuated lipotoxicity, induced more favorable lipid profiles and counteracted the excessive carbonylation of proteins associated with pH regulation in the kidneys, resulting in an inhibition of the progression of the prediabetes state and kidney disease.


Targeting Hepatic Protein Carbonylation and Oxidative Stress Occurring on Diet-Induced Metabolic Diseases through the Supplementation with Fish Oils.

  • Silvia Muñoz‎ et al.
  • Marine drugs‎
  • 2018‎

The present study addressed the ability of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFA), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), to ameliorate liver protein damage derived from oxidative stress and induced by consumption of high-caloric diets, typical of Westernized countries. The experimental design included an animal model of Sprague-Dawley rats fed high-fat high-sucrose (HFHS) diet supplemented with ω-3 EPA and DHA for a complete hepatic proteome analysis to map carbonylated proteins involved in specific metabolic pathways. Results showed that the intake of marine ω-3 PUFA through diet significantly decreased liver protein carbonylation caused by long-term HFHS consumption and increased antioxidant system. Fish oil modulated the carbonylation level of more than twenty liver proteins involved in critical metabolic pathways, including lipid metabolism (e.g., albumin), carbohydrate metabolism (e.g., pyruvate carboxylase), detoxification process (e.g., aldehyde dehydrogenase 2), urea cycle (e.g., carbamoyl-phosphate synthase), cytoskeleton dynamics (e.g., actin), or response to oxidative stress (e.g., catalase) among others, which might be under the control of diet marine ω-3 PUFA. In parallel, fish oil significantly changed the liver fatty acid profile given by the HFHS diet, resulting in a more anti-inflammatory phenotype. In conclusion, the present study highlights the significance of marine ω-3 PUFA intake for the health of rats fed a Westernized diet by describing several key metabolic pathways which are protected in liver.


Association of plasma and urine viscosity with cardiometabolic risk factors and oxidative status. A pilot study in subjects with abdominal obesity.

  • Beatriz Herranz‎ et al.
  • PloS one‎
  • 2018‎

There is increasing interest in the search for accurate, repeatable and widely applicable clinical biomarkers for the early detection of cardiometabolic alterations and oxidative status. Viscosity is a promising tool in that sense, although most studies have used simple viscosimeters, providing limited information, and have not considered oxidative status. The aim of this study was to assess whether viscosity determinations were associated with cardiometabolic and oxidative status in subjects at a primary stage of cardiometabolic risk. A pilot study (n = 20) was conducted in subjects with abdominal obesity, determining urine and plasma viscosity with a rotational rheometer at different shear rates (10000-1000 s-1 in plasma and 1000-50 s-1 in urine). Simple regression showed that urine viscosity was significantly (p< 0.05) associated with markers of oxidative status, and plasma viscosity with blood glucose. Categorical Principal Component Analysis plots showed that urine viscosity measurements at different shear rates clustered in three groups (low, intermediate and high shear rates) were selectively associated with uric acid, polyphenols and antioxidant capacity respectively. Plasma viscosity did not seem to be a relevant clinical marker in subjects with abdominal obesity. Therefore, urine viscosity could potentially serve as a complimentary marker in the evaluation of oxidative status.


High-resolution quantitative proteomics applied to the study of the specific protein signature in the sputum and saliva of active tuberculosis patients and their infected and uninfected contacts.

  • Jesús Mateos‎ et al.
  • Journal of proteomics‎
  • 2019‎

Our goal was to establish panels of protein biomarkers that are characteristic of patients with microbiologically confirmed pulmonary tuberculosis (TB) and their contacts, including latent TB-infected (LTBI) and uninfected patients. Since the first pathogen-host contact occurs in the oral and nasal passages the saliva and sputum were chosen as the biological fluids to be studied. Quantitative shotgun proteomics was performed using a LTQ-Orbitrap-Elite platform. For active TB patients, both fluids exhibited a specific accumulation of proteins that were related to complement activation, inflammation and modulation of immune response. In the saliva of TB patients, a decrease of in proteins related to glucose and lipid metabolism was detected. In contrast, the sputum of uninfected contacts presented a specific proteomic signature that was composed of proteins involved in the perception of bitter taste, defense against pathogens and innate immune response, suggesting that those are key events during the initial entry of the pathogen in the host. SIGNIFICANCE: This is the first study to compare the saliva and sputum from active TB patients and their contacts. Our findings strongly suggest that TB patients show not only an activation of processes that are related to complement activation and modulation of inflammation but also an imbalance in carbohydrate and lipid metabolism. In addition, those individuals who do not get infected after direct exposure to the pathogen display a typical proteomic signature in the sputum, which is a reflection of the secretion from the nasal and oral mucosa, the first immunological barriers that M. tuberculosis encounters in the host. Thus, this result indicates the importance of the processes related to the innate immune response in fighting the initial events of the infection.


Combined Buckwheat d-Fagomine and Fish Omega-3 PUFAs Stabilize the Populations of Gut Prevotella and Bacteroides While Reducing Weight Gain in Rats.

  • Mercè Hereu‎ et al.
  • Nutrients‎
  • 2019‎

Some functional food components may help maintain homeostasis by promoting balanced gut microbiota. Here, we explore the possible complementary effects of d-fagomine and ω-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA 1:1) on putatively beneficial gut bacterial strains. Male Sprague-Dawley rats were supplemented with d-fagomine, ω-3 PUFAs, or both, for 23 weeks. Bacterial subgroups were evaluated in fecal DNA by quantitative real-time polymerase chain reaction (qRT-PCR) and short-chain fatty acids were determined by gas chromatography. We found that the populations of the genus Prevotella remained stable over time in animals supplemented with d-fagomine, independently of ω-3 PUFA supplementation. Animals in these groups gained less weight than controls and rats given only ω-3 PUFAs. d-Fagomine supplementation together with ω-3 PUFAs maintained the relative populations of Bacteroides. ω-3 PUFAs alone or combined with d-fagomine reduced the amount of acetic acid and total short-chain fatty acids in feces. The plasma levels of pro-inflammatory arachidonic acid derived metabolites, triglycerides and cholesterol were lower in both groups supplemented with ω-3 PUFAs. The d-fagomine and ω-3 PUFAs combination provided the functional benefits of each supplement. Notably, it helped stabilize populations of Prevotella in the rat intestinal tract while reducing weight gain and providing the anti-inflammatory and cardiovascular benefits of ω-3 PUFAs.


Potential Relationship between the Changes in Circulating microRNAs and the Improvement in Glycaemic Control Induced by Grape Pomace Supplementation.

  • Asier Léniz‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

MicroRNAs (miRNAs) represent important tools in medicine and nutrition as new biomarkers, and can act as mediators of nutritional and pharmacological interventions. The aim of the present study was to analyse the effect of grape pomace supplementation on the expression of seven selected miRNAs and their potential relationship with the observed positive effect on glycaemic control, in order to shed light on the mechanism underlying the beneficial effect of this dietary intervention. For this purpose, plasma samples were obtained from 49 subjects with metabolic syndrome. After supplementation with grape pomace (6 weeks), these subjects were categorised as responders (n = 23) or non-responders (n = 26) according to the changes in their fasting insulin rate. MiRNA expression at baseline and at the end of the supplementation was analysed by RT-PCR, and the MiRecords Database was used to identify potential target genes for the studied miRNAs. The increase observed in miR-23a in the whole cohort was present in both subgroups of participants. The increase in miR-181a was significant among non-responders but not responders. The decrease in miR-30c and miR-222 was found in the responders, but not in the non-responders. No changes were observed in miR-10a, miR-151a, miR-181a, and miR-let-7a expressions. After analysing these results, a potential involvement of the reduced expression of miR-30c and miR-222, two microRNAs associated with insulin resistance and diabetes, in the improvement of glycaemic control produced by grape pomace administration, can be proposed. Further research is needed to confirm the involvement of glycolytic enzymes, PI3K, AMPK, and IRS-1 in the effect of grape pomace, as suggested by the changes induced in microRNAs.


Serum proteomics of active tuberculosis patients and contacts reveals unique processes activated during Mycobacterium tuberculosis infection.

  • Jesús Mateos‎ et al.
  • Scientific reports‎
  • 2020‎

Tuberculosis (TB) is the most lethal infection among infectious diseases. The specific aim of this study was to establish panels of serum protein biomarkers representative of active TB patients and their household contacts who were either infected (LTBI) or uninfected (EMI-TB Discovery Cohort, Pontevedra Region, Spain). A TMT (Tamdem mass tags) 10plex-based quantitative proteomics study was performed in quintuplicate containing a total of 15 individual serum samples per group. Peptides were analyzed in an LC-Orbitrap Elite platform, and raw data were processed using Proteome Discoverer 2.1. A total of 418 proteins were quantified. The specific protein signature of active TB patients was characterized by an accumulation of proteins related to complement activation, inflammation and modulation of immune response and also by a decrease of a small subset of proteins, including apolipoprotein A and serotransferrin, indicating the importance of lipid transport and iron assimilation in the progression of the disease. This signature was verified by the targeted measurement of selected candidates in a second cohort (EMI-TB Verification Cohort, Maputo Region, Mozambique) by ELISA and nephelometry techniques. These findings will aid our understanding of the complex metabolic processes associated with TB progression from LTBI to active disease.


Potential of a Sunflower Seed By-Product as Animal Fat Replacer in Healthier Frankfurters.

  • Simona Grasso‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

Upcycled defatted sunflower seed flour (SUN), a by-product obtained from sunflower oil extraction, was used as an animal fat replacer to develop healthier frankfurters. For that end, animal fat was replaced (~50%) with water and 2% or 4% of SUN. Nutritional composition, technological, structural and sensorial properties were evaluated. SUN incorporation led to a significant increase in protein, minerals (magnesium, potassium, copper and manganese) and a decrease in fat content (~37% less than control with all animal fat). The incorporation of SUN in frankfurters promoted the presence of phenolic compounds. Increasing SUN addition lead to an increasingly (p < 0.05) darker frankfurter colour. Samples with SUN at 4% were firmer than the control according to TPA and sensory analysis results and showed the highest lipid disorder attributed to more lipid interactions in the meat matrix. SUN addition as an animal fat replacer in frankfurters is a feasible strategy to valorise sunflower oil by-products and obtain healthier frankfurters.


In Vivo Evaluation of the Cardiometabolic Potential of Grape Pomace: Effect of Applying Instant Controlled Pressure Drop.

  • Yuridia Martínez-Meza‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2022‎

Grape pomace (GP) is a source of polyphenols which may be present as free structures or associated with dietary fiber. Instant controlled pressure drop (DIC) is a technology which can modify the association of polyphenols with food matrixes, but how these modifications affect the health benefits associated with GP remains to be elucidated. In this study, in rats fed a high-fat-fructose diet (HFF), we evaluated the in vivo cardiometabolic effects of the modification of polyphenols in GP caused by DIC at 0.2 MPa for 60 s (DIC1) and 0.4 MPa for 120 s (DIC2). These treatments increased anthocyanin and total flavonoid contents, respectively, while all the supplementations caused significant improvements in insulin resistance and plasma triacylglycerols. Thus, the bioactive compounds present in GP (including a major fraction of non-extractable proanthocyanidins) caused these modifications independently of the specific polyphenol profiles which may have resulted from these DIC treatments. Additionally, only intact GP led to an increase in HDL cholesterol, while only DIC2-treated GP improved hepatic steatosis. In conclusion, GP always improves insulin sensitivity in this animal model of obesity, while the different compositions of GP modified by DIC may be associated with other cardiometabolic parameters.


Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum.

  • Francisco Moreno‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2024‎

The regular intake of diets high in saturated fat and sugars increases oxidative stress and has been linked to cognitive decline and premature brain aging. The cerebellum is highly vulnerable to oxidative stress and thus, obesogenic diets might be particularly detrimental to this tissue. However, the precise molecular mechanisms behind obesity-related brain damage are still not clear. Since protein carbonylation, a biomarker of oxidative stress, influences protein functions and is involved in metabolic control, the current investigation addressed the effect of long-term high-fat and high-sucrose diet intake on the cerebellum of Sprague-Dawley rats by deciphering the changes caused in the carbonylated proteome. The antioxidant effects of fish oil supplementation on cerebellar carbonylated proteins were also investigated. Lipid peroxidation products and carbonylated proteins were identified and quantified using immunoassays and 2D-LC-MS/MS in the cerebellum. After 21 weeks of nutritional intervention, the obesogenic diet selectively increased carbonylation of the proteins that participate in ATP homeostasis and glutamate metabolism in the cerebellum. Moreover, the data demonstrated that fish oil supplementation restrained carbonylation of the main protein targets oxidatively damaged by the obesogenic diet, and additionally protected against carbonylation of several other proteins involved in amino acid biosynthesis and neurotransmission. Therefore, dietary interventions with fish oils could help the cerebellum to be more resilient to oxidative damage. The results could shed some light on the effect of high-fat and high-sucrose diets on redox homeostasis in the cerebellum and boost the development of antioxidant-based nutritional interventions to improve cerebellum health.


Protective effect of the omega-3 polyunsaturated fatty acids: Eicosapentaenoic acid/Docosahexaenoic acid 1:1 ratio on cardiovascular disease risk markers in rats.

  • Laura Lluís‎ et al.
  • Lipids in health and disease‎
  • 2013‎

High consumption of fish carries a lower risk of cardiovascular disease as a consequence of dietary omega-3 long chain polyunsaturated fatty acid (n-3 PUFA; especially EPA and DHA) content. A controversy exists about the component/s responsible of these beneficial effects and, in consequence, which is the best proportion between both fatty acids. We sought to determine, in healthy Wistar rats, the proportions of EPA and DHA that would induce beneficial effects on biomarkers of oxidative stress, and cardiovascular disease risk.


Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome.

  • Núria Taltavull‎ et al.
  • Lipids in health and disease‎
  • 2014‎

Marine polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with improvement in the Metabolic Syndrome (MS). The aim of this study is to evaluate how three fish-oil diets with different eicosapentaenoic acid/docosahexaenoic acid ratios (EPA/DHA ratio) affect the histology of liver, kidney, adipose tissue and aorta in a preliminary morphological study. This work uses an animal model of metabolic syndrome in comparison with healthy animals in order to provide information about the best EPA:DHA ratio to prevent or to improve metabolic syndrome symptoms.


Non-Targeted LC-MS/MS Assay for Screening Over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations.

  • Gabriel Dasilva‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

A non-targeted strategy to simultaneously screen for over 100 lipid mediators from ω-6 ARA and ω-3 EPA and DHA fatty acids is presented. The method based on an extensive study of fragmentation patterns obtained by SPE-LC-MS/MS analysis-provided fingerprints to comprehensively elucidate and identify lipid mediators in biological samples. Many of these metabolites are associated to metabolic disorders, inflammatory, immune and oxidative stress. The methodology consisted of a three-step procedure. (1) SPE extraction of compounds from plasma and adipose tissue was followed by LC-MS/MS analysis operating in full scan mode. The methodology was validated for a group of 65 metabolites using standards. SPE recoveries ranged from 29-134% and matrix effect from 10-580%. LOD and LOQ ranged from 0.01 to 1765 ng/mL and 0.03 to 5884 ng/mL respectively, similarly than current analytical strategies based on MRM mode. (2) An extensive study of the mass spectra of a wide range of compounds was done to stablish a specific fragmentation pattern. Interestingly, illustrative fragmentations and new specific transitions to identify EPA and DHA lipid mediators have been innovatively established. (3) After analysis, 30 lipid mediators were tentatively identified in plasma and 35 in adipose tissue of rats according to the pre stablished fragmentation patterns. The hypothetical identification of compounds was validated by using reference standards. Around 85-90% of proposed identifications were correctly assigned and only 4 and 3 identifications failed in adipose tissue and plasma, respectively. The method allowed the identification of these metabolites without losing information by the use of predefined ions list. Therefore, the use of full scan mode together with the study of fragmentation patterns provided a novel and stronger analytical tool to study the complete profile of lipid mediators in biological samples than the analysis through MRM based methods. Importantly, no analytical standards were required at this qualitative screening stage and the performance and sensitivity of the assay were very similar to that of a MRM method.


Nutritional and Healthy Value of Chemical Constituents Obtained from Patagonian Squid (Doryteuthis gahi) By-Products Captured at Different Seasons.

  • Santiago P Aubourg‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

This study focuses on the extraction of nutritional and healthy constituents of whole by-products resulting from the commercialisation of Patagonian squid (Doriteuthis gahi). By-products corresponding to squid individuals captured at different seasons were comparatively analysed for proximate composition, lipid classes content, fatty acid (FA) profile, and macroelement and trace element composition. As a result, moisture, lipid, protein, and ash values were included in the ranges 829.0-842.8, 17.5-21.8, 106.0-123.7, and 9.3-13.3 g·kg-1 by-products, respectively. Phospholipids showed to be the most abundant lipid class (359.2-463.5 g·kg-1 lipids), while triacylglycerols were only present in a 9.5-13.1 g·kg-1 lipids range. Valuable levels were detected for α-tocopherol (539.6-973.3 mg·kg-1 lipids), polyunsaturated fatty acids (PUFA; 50.5-52.6 g·100 g-1 FA), ω3 PUFA (47.0-48.6 g·100 g-1 FA), PUFA/saturated FA ratio (1.4-1.6), and ω3/ω6 ratio (12.1-13.4). Among macroelements, S, P, and Na showed to be more abundant than K, Mg, and Ca. Profitable levels of Co, Cu, Fe, Mn, Se, and Zn were detected in all kinds of individuals. In spite of content variations found as a result of the capture season of Patagonian squid individuals, whole by-products of this cephalopod species can be considered as a profitable source to provide the food and pharmaceutical industries with useful value-added constituents.


Comparative Study of Bioactive Lipid Extraction from Squid (Doryteuthis gahi) by-Products by Green Solvents.

  • Santiago P Aubourg‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2022‎

A novel approach of bioactive lipid extraction by different green solvents was carried out on squid (Doryteuthis gahi) by-products. By-products (viscera, heads, skin, tails, etc.), considered as a single product, were subjected to the following solvent systems: ethanol, acetone, ethyl acetate, 1/1 ethanol/acetone, 1/1 ethanol/ethyl acetate, and 1/1 acetone/ethyl acetate. Analyses carried out included lipid yield, lipid class content, and fatty acid (FA) composition. Results were compared to the lipid extract obtained by the traditional procedure (1/1 chloroform/methanol). Lipid yields obtained by green solvents led to a 33.4−73.2% recovery compared to traditional extraction; the highest values (p < 0.05) were obtained by ethanol-containing systems. Compared to the traditional procedure, ethanol systems showed an 85.8−90.3% recovery of phospholipid compounds and no differences (p > 0.05) in the ω3/ω6 ratio. Green-extracting systems led to higher average values for eicosapentaenoic acid content (15.66−18.56 g·100 g−1 total FAs) and polyene index (1.93−3.29) than chloroform/methanol extraction; differences were significant (p < 0.05) for systems including acetone and ethyl acetate. No differences (p > 0.05) were detected for docosahexaenoic acid content between the traditional procedure and green systems, with all values being included in the 31.12−32.61 g·100 g−1 total FA range. The suitability of EtOH-containing green systems for extraction of bioactive lipid compounds from squid by-products was concluded.


Fiber-like Action of d-Fagomine on the Gut Microbiota and Body Weight of Healthy Rats.

  • Sara Ramos-Romero‎ et al.
  • Nutrients‎
  • 2022‎

The goal of this work is to explore if the changes induced by d-fagomine in the gut microbiota are compatible with its effect on body weight and inflammation markers in rats. Methods: Sprague Dawley rats were fed a standard diet supplemented with d-fagomine (or not, for comparison) for 6 months. The variables measured were body weight, plasma mediators of inflammation (hydroxyeicosatetraenoic acids, leukotriene B4, and IL-6), and the concentration of acetic acid in feces and plasma. The composition and diversities of microbiota in cecal content and feces were estimated using 16S rRNA metabarcoding and high-throughput sequencing. We found that after just 6 weeks of intake d-fagomine significantly reduced body weight gain, increased the plasma acetate concentration, and reduced the plasma concentration of the pro-inflammatory biomarkers' leukotriene B4, interleukin 6 and 12 hydroxyeicosatetraenoic acids. These changes were associated with a significantly increased prevalence of Bacteroides and Prevotella feces and increased Bacteroides, Prevotella, Clostridium, and Dysgonomonas while reducing Anaerofilum, Blautia, and Oribacterium in cecal content. In conclusion, d-fagomine induced changes in the composition and diversity of gut microbiota similar to those elicited by dietary fiber and compatible with its anti-inflammatory and body-weight-reducing effects.


Fish Oil Improves Pathway-Oriented Profiling of Lipid Mediators for Maintaining Metabolic Homeostasis in Adipose Tissue of Prediabetic Rats.

  • Gabriel Dasilva‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Adipose tissue is now recognized as an active organ with an important homeostatic function in glucose and lipid metabolism and the development of insulin resistance. The present research investigates the role of lipid mediators and lipid profiling for controlling inflammation and the metabolic normal function of white adipose tissue from rats suffering from diet-induced prediabetes. Additionally, the contribution to the adipose lipidome induced by the consumption of marine ω-3 PUFAs as potential regulators of inflammation is addressed. For that, the effects on the inflammatory response triggered by high-fat high-sucrose (HFHS) diets were studied in male Sprague-Dawley rats. Using SPE-LC-MS/MS-based metabolo-lipidomics, a range of eicosanoids, docosanoids and specialized pro-resolving mediators (SPMs) were measured in white adipose tissue. The inflammatory response occurring in prediabetic adipose tissue was associated with the decomposition of ARA epoxides to ARA-dihydroxides, the reduction of oxo-derivatives and the formation of prostaglandins (PGs). In an attempt to control the inflammatory response initiated, LOX and non-enzymatic oxidation shifted toward the production of the less pro-inflammatory EPA and DHA metabolites rather than the high pro-inflammatory ARA hydroxides. Additionally, the change in LOX activity induced the production of intermediate hydroxides precursors of SPMs as protectins (PDs), resolvins (Rvs) and maresins (MaRs). This compensatory mechanism to achieve the restoration of tissue homeostasis was significantly strengthened through supplementation with fish oils. Increasing proportions of ω-3 PUFAs in adipose tissue significantly stimulated the formation of DHA-epoxides by cytochrome P450, the production of non-enzymatic EPA-metabolites and prompted the activity of 12LOX. Finally, protectin PDX was significantly reduced in the adipose tissue of prediabetic rats and highly enhanced through ω-3 PUFAs supplementation. Taken together, these actively coordinated modifications constitute key mechanisms to restore adipose tissue homeostasis with an important role of lipid mediators. This compensatory mechanism is reinforced through the supplementation of the diet with fish oils with high and balanced contents of EPA and DHA. The study highlights new insides on the targets for effective treatment of incipient diet-induced diabetes and the mechanism underlying the potential anti-inflammatory action of marine lipids.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: