Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 72 papers

Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees.

  • Dries Cardoen‎ et al.
  • PloS one‎
  • 2011‎

The eusocial societies of honeybees, where the queen is the only fertile female among tens of thousands sterile worker bees, have intrigued scientists for centuries. The proximate factors, which cause the inhibition of worker bee ovaries, remain largely unknown; as are the factors which cause the activation of worker ovaries upon the loss of queen and brood in the colony. In an attempt to reveal key players in the regulatory network, we made a proteomic comparison of hemolymph profiles of workers with completely activated ovaries vs. rudimentary ovaries. An unexpected finding of this study is the correlation between age matched worker sterility and the enrichment of Picorna-like virus proteins. Fertile workers, on the other hand, show the upregulation of potential components of the immune system. It remains to be investigated whether viral infections contribute to worker sterility directly or are the result of a weaker immune system of sterile workers.


SIFamide illustrates the rapid evolution in Arthropod neuropeptide research.

  • Peter Verleyen‎ et al.
  • General and comparative endocrinology‎
  • 2009‎

This review is focussed on SIFamide. This neuropeptide was discovered as a result of an extensive purification process, typical for 20th century physiology, of an extract of 350,000 flesh flies. Our knowledge of SIFamide greatly expanded since the first publication in 1996. Describing the minor and major findings on this peptide is our lead to summarise a number of innovations that recently became common in research on Arthropods. Mass spectrometry, nanoLC, whole mount immunocytochemistry, genome sequencing, deorphanizing receptors and functional gene knock downs are aspects that dramatically improved and changed peptide research. Some of the techniques mentioned in this review were of course applied before 1996, but they were not widespread. Although the focus of the review is on insects we incorporated the data of SIFamide in Crustaceans as well. SIFamide illustrates that crustaceans and insects might have more in common than was previously anticipated. Today, six isoforms of SIFamide are discovered in many crustaceans, several insects and a tick. The sequence of SIFamide is extremely conserved among these species. Deorphanizing its receptor in Drosophila, learned that both the ligand and receptor are impressively conserved, pointing at a crucial function. Immunohistochemistry and mass spectrometry data reveal that SIFamide is present in the crustacean brain and gut, but restricted to four neurons in the insect pars intercerebralis. The immunoreactive patterns in the brain refer to a neuromodulatory role in combining visual, tactile and olfactory input. Eventually, targeted cell ablation and RNAi revealed that SIFamide modulates sexual behaviour in fruit flies.


Metabolic profiling of a transgenic Caenorhabditis elegans Alzheimer model.

  • Roel Van Assche‎ et al.
  • Metabolomics : Official journal of the Metabolomic Society‎
  • 2015‎

Despite decades of research, no early-onset biomarkers are currently available for Alzheimer's disease, a cureless neurodegenerative disease afflicting millions worldwide. In this study, transgenic Caenorhabditis elegans were used to investigate changes in the metabolome after induced expression of amyloid-β. GC- and LC-MS-based platforms determined a total of 157 differential features. Some of these were identified using in-house (GC-MS) or public libraries (LC-MS), revealing changes in allantoin, cystathionine and tyrosine levels. Since C. elegans is far better suited to metabolomics studies than most other model systems, the accordance of these findings with vertebrate literature is promising and argues for further use of C. elegans as a model of human pathology in the study of AD.


A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19.

  • Rob Lavigne‎ et al.
  • mBio‎
  • 2013‎

In contrast to the rapidly increasing knowledge on genome content and diversity of bacterial viruses, insights in intracellular phage development and its impact on bacterial physiology are very limited. We present a multifaceted study combining quantitative PCR (qPCR), microarray, RNA-seq, and two-dimensional gel electrophoresis (2D-GE), to obtain a global overview of alterations in DNA, RNA, and protein content in Pseudomonas aeruginosa PAO1 cells upon infection with the strictly lytic phage LUZ19. Viral genome replication occurs in the second half of the phage infection cycle and coincides with degradation of the bacterial genome. At the RNA level, there is a sharp increase in viral mRNAs from 23 to 60% of all transcripts after 5 and 15 min of infection, respectively. Although microarray analysis revealed a complex pattern of bacterial up- and downregulated genes, the accumulation of viral mRNA clearly coincides with a general breakdown of abundant bacterial transcripts. Two-dimensional gel electrophoretic analyses shows no bacterial protein degradation during phage infection, and seven stress-related bacterial proteins appear. Moreover, the two most abundantly expressed early and late-early phage proteins, LUZ19 gene product 13 (Gp13) and Gp21, completely inhibit P. aeruginosa growth when expressed from a single-copy plasmid. Since Gp13 encodes a predicted GNAT acetyltransferase, this observation points at a crucial but yet unexplored level of posttranslational viral control during infection.


UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts.

  • Zhicheng Zhang‎ et al.
  • Plant methods‎
  • 2016‎

The complexity of RNA regulation is one of the current frontiers in animal and plant molecular biology research. RNA-binding proteins (RBPs) are characteristically involved in post-transcriptional gene regulation through interaction with RNA. Recently, the mRNA-bound proteome of mammalian cell lines has been successfully cataloged using a new method called interactome capture. This method relies on UV crosslinking of proteins to RNA, purifying the mRNA using complementary oligo-dT beads and identifying the crosslinked proteins using mass spectrometry. We describe here an optimized system of mRNA interactome capture for Arabidopsis thaliana leaf mesophyll protoplasts, a cell type often used in functional cellular assays.


Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM.

  • Jeroen Vangindertael‎ et al.
  • Scientific reports‎
  • 2015‎

Photoactivated localization microscopy (PALM) is a super-resolution imaging technique based on the detection and subsequent localization of single fluorescent molecules. PALM is therefore a powerful tool in resolving structures and putative interactions of biomolecules at the ultimate analytical detection limit. However, its limited imaging depth restricts PALM mostly to in vitro applications. Considering the additional need for anatomical context when imaging a multicellular organism, these limitations render the use of PALM in whole animals difficult. Here we integrated PALM with confocal microscopy for correlated imaging of the C. elegans nervous system, a technique we termed confocal correlated PALM (ccPALM). The neurons, lying below several tissue layers, could be visualized up to 10 μm deep inside the animal. By ccPALM, we visualized ionotropic glutamate receptor distributions in C. elegans with an accuracy of 20 nm, revealing super-resolution structure of receptor clusters that we mapped onto annotated neurons in the animal. Pivotal to our results was the TIRF-independent detection of single molecules, achieved by genetic regulation of labeled receptor expression and localization to effectively reduce the background fluorescence. By correlating PALM with confocal microscopy, this platform enables dissecting biological structures with single molecule resolution in the physiologically relevant context of whole animals.


Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways.

  • Shi Tian‎ et al.
  • Scientific reports‎
  • 2016‎

Gonadotropin-releasing hormone (GnRH) is a key regulator of reproductive maturation in humans and other vertebrates. Homologs of GnRH and its cognate receptor have been identified in invertebrates-for example, the adipokinetic hormone (AKH) and corazonin (CRZ) neuropeptide pathways in arthropods. However, the precise evolutionary relationships and origins of these signalling systems remain unknown. Here we have addressed this issue with the first identification of both GnRH-type and CRZ-type signalling systems in a deuterostome-the echinoderm (starfish) Asterias rubens. We have identified a GnRH-like neuropeptide (pQIHYKNPGWGPG-NH2) that specifically activates an A. rubens GnRH-type receptor and a novel neuropeptide (HNTFTMGGQNRWKAG-NH2) that specifically activates an A. rubens CRZ-type receptor. With the discovery of these ligand-receptor pairs, we demonstrate that the vertebrate/deuterostomian GnRH-type and the protostomian AKH systems are orthologous and the origin of a paralogous CRZ-type signalling system can be traced to the common ancestor of the Bilateria (Urbilateria).


GPCRs Direct Germline Development and Somatic Gonad Function in Planarians.

  • Amir Saberi‎ et al.
  • PLoS biology‎
  • 2016‎

Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.


A theoretical and experimental proteome map of Pseudomonas aeruginosa PAO1.

  • Elke Lecoutere‎ et al.
  • MicrobiologyOpen‎
  • 2012‎

A total proteome map of the Pseudomonas aeruginosa PAO1 proteome is presented, generated by a combination of two-dimensional gel electrophoresis and protein identification by mass spectrometry. In total, 1128 spots were visualized, and 181 protein spots were characterized, corresponding to 159 different protein entries. In particular, protein chaperones and enzymes important in energy conversion and amino acid biosynthesis were identified. Spot analysis always resulted in the identification of a single protein, suggesting sufficient spot resolution, although the same protein may be detected in two or more neighboring spots, possibly indicating posttranslational modifications. Comparison to the theoretical proteome revealed an underrepresentation of membrane proteins, though the identified proteins cover all predicted subcellular localizations and all functional classes. These data provide a basis for subsequent comparative studies of the biology and metabolism of P. aeruginosa, aimed at unraveling global regulatory networks.


Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS.

  • Peter Verleyen‎ et al.
  • Journal of insect physiology‎
  • 2006‎

Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide.


In vitro aggregating β-lactamase-polyQ chimeras do not induce toxic effects in an in vivo Caenorhabditis elegans model.

  • Roel Van Assche‎ et al.
  • Journal of negative results in biomedicine‎
  • 2017‎

A series of human diseases are caused by the misfolding and aggregation of specific proteins or peptides into amyloid fibrils; nine of these diseases, referred to as polyglutamine diseases, are associated with proteins carrying an expanded polyglutamine (polyQ) region. While the presence of this latter is thought to be the determinant factor for the development of polyQ diseases, the non-polyQ regions of the host proteins are thought to play a significant modulating role.


DamID identifies targets of CEH-60/PBX that are associated with neuron development and muscle structure in Caenorhabditis elegans.

  • Pieter Van de Walle‎ et al.
  • PloS one‎
  • 2020‎

Transcription factors govern many of the time- and tissue-specific gene expression events in living organisms. CEH-60, a homolog of the TALE transcription factor PBX in vertebrates, was recently characterized as a new regulator of intestinal lipid mobilization in Caenorhabditis elegans. Because CEH-60's orthologs and paralogs exhibit several other functions, notably in neuron and muscle development, and because ceh-60 expression is not limited to the C. elegans intestine, we sought to identify additional functions of CEH-60 through DNA adenine methyltransferase identification (DamID). DamID identifies protein-genome interaction sites through GATC-specific methylation. We here report 872 putative CEH-60 gene targets in young adult animals, and 587 in L2 larvae, many of which are associated with neuron development or muscle structure. In light of this, we investigate morphology and function of ceh-60 expressing AWC neurons, and contraction of pharyngeal muscles. We find no clear functional consequences of loss of ceh-60 in these assays, suggesting that in AWC neurons and pharyngeal muscle, CEH-60 function is likely more subtle or redundant with other factors.


CEH-60/PBX regulates vitellogenesis and cuticle permeability through intestinal interaction with UNC-62/MEIS in Caenorhabditis elegans.

  • Pieter Van de Walle‎ et al.
  • PLoS biology‎
  • 2019‎

The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. These include abundant yolk protein production in egg-laying species, an energetically costly process under extensive transcriptional control. Here, we used the model organism Caenorhabditis elegans to provide evidence for the spatiotemporally defined interaction of two evolutionarily conserved transcription factors, CEH-60/PBX and UNC-62/MEIS, acting as a gateway to yolk protein production. Via proteomics, bimolecular fluorescence complementation (BiFC), and biochemical and functional readouts, we show that this interaction occurs in the intestine of animals at the onset of sexual maturity and suffices to support the reproductive program. Our electron micrographs and functional assays provide evidence that intestinal PBX/MEIS cooperation drives another process that depends on lipid mobilization: the formation of an impermeable epicuticle. Without this lipid-rich protective layer, mutant animals are hypersensitive to exogenous oxidative stress and are poor partners for mating. Dedicated communication between the hypodermis and intestine in C. elegans likely supports these physiological outcomes, and we propose a fundamental role for the conserved PBX/MEIS interaction in multicellular signaling networks that rely on lipid homeostasis.


A neuronal MAP kinase constrains growth of a Caenorhabditis elegans sensory dendrite throughout the life of the organism.

  • Ian G McLachlan‎ et al.
  • PLoS genetics‎
  • 2018‎

Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the βH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.


Mass spectrometric evidence for neuropeptide-amidating enzymes in Caenorhabditis elegans.

  • Sven Van Bael‎ et al.
  • The Journal of biological chemistry‎
  • 2018‎

Neuropeptides constitute a vast and functionally diverse family of neurochemical signaling molecules and are widely involved in the regulation of various physiological processes. The nematode Caenorhabditis elegans is well-suited for the study of neuropeptide biochemistry and function, as neuropeptide biosynthesis enzymes are not essential for C. elegans viability. This permits the study of neuropeptide biosynthesis in mutants lacking certain neuropeptide-processing enzymes. Mass spectrometry has been used to study the effects of proprotein convertase and carboxypeptidase mutations on proteolytic processing of neuropeptide precursors and on the peptidome in C. elegans However, the enzymes required for the last step in the production of many bioactive peptides, the carboxyl-terminal amidation reaction, have not been characterized in this manner. Here, we describe three genes that encode homologs of neuropeptide amidation enzymes in C. elegans and used tandem LC-MS to compare neuropeptides in WT animals with those in newly generated mutants for these putative amidation enzymes. We report that mutants lacking both a functional peptidylglycine α-hydroxylating monooxygenase and a peptidylglycine α-amidating monooxygenase had a severely altered neuropeptide profile and also a decreased number of offspring. Interestingly, single mutants of the amidation enzymes still expressed some fully processed amidated neuropeptides, indicating the existence of a redundant amidation mechanism in C. elegans All MS data are available via ProteomeXchange with the identifier PXD008942. In summary, the key steps in neuropeptide processing in C. elegans seem to be executed by redundant enzymes, and loss of these enzymes severely affects brood size, supporting the need of amidated peptides for C. elegans reproduction.


NPY/NPF-Related Neuropeptide FLP-34 Signals from Serotonergic Neurons to Modulate Aversive Olfactory Learning in Caenorhabditis elegans.

  • Melissa Fadda‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2020‎

Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.


Neuropeptide signalling shapes feeding and reproductive behaviours in male Caenorhabditis elegans.

  • Matthew J Gadenne‎ et al.
  • Life science alliance‎
  • 2022‎

Sexual dimorphism occurs where different sexes of the same species display differences in characteristics not limited to reproduction. For the nematode Caenorhabditis elegans, in which the complete neuroanatomy has been solved for both hermaphrodites and males, sexually dimorphic features have been observed both in terms of the number of neurons and in synaptic connectivity. In addition, male behaviours, such as food-leaving to prioritise searching for mates, have been attributed to neuropeptides released from sex-shared or sex-specific neurons. In this study, we show that the lury-1 neuropeptide gene shows a sexually dimorphic expression pattern; being expressed in pharyngeal neurons in both sexes but displaying additional expression in tail neurons only in the male. We also show that lury-1 mutant animals show sex differences in feeding behaviours, with pharyngeal pumping elevated in hermaphrodites but reduced in males. LURY-1 also modulates male mating efficiency, influencing motor events during contact with a hermaphrodite. Our findings indicate sex-specific roles of this peptide in feeding and reproduction in C. elegans, providing further insight into neuromodulatory control of sexually dimorphic behaviours.


System-wide mapping of peptide-GPCR interactions in C. elegans.

  • Isabel Beets‎ et al.
  • Cell reports‎
  • 2023‎

Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.


Integrating -Omics: Systems Biology as Explored Through C. elegans Research.

  • Roel Van Assche‎ et al.
  • Journal of molecular biology‎
  • 2015‎

-Omics data have become indispensable to systems biology, which aims to describe the full complexity of functional cells, tissues, organs and organisms. Generating vast amounts of data via such methods, researchers have invested in ways of handling and interpreting these. From the large volumes of -omics data that have been gathered over the years, it is clear that the information derived from one -ome is usually far from complete. Now, individual techniques and methods for integration are maturing to the point that researchers can focus on network-based integration rather than simply interpreting single -ome studies. This review evaluates the application of integrated -omics approaches with a focus on Caenorhabditis elegans studies, intending to direct researchers in this field to useful databases and inspiring examples.


Molecular characterization of a short neuropeptide F signaling system in the tsetse fly, Glossina morsitans morsitans.

  • Jelle Caers‎ et al.
  • General and comparative endocrinology‎
  • 2016‎

Neuropeptides of the short neuropeptide F (sNPF) family are widespread among arthropods and found in every sequenced insect genome so far. Functional studies have mainly focused on the regulatory role of sNPF in feeding behavior, although this neuropeptide family has pleiotropic effects including in the control of locomotion, osmotic homeostasis, sleep, learning and memory. Here, we set out to characterize and determine possible roles of sNPF signaling in the haematophagous tsetse fly Glossina morsitans morsitans, a vector of African Trypanosoma parasites causing human and animal African trypanosomiasis. We cloned the G. m. morsitans cDNA sequences of an sNPF-like receptor (Glomo-sNPFR) and precursor protein encoding four Glomo-sNPF neuropeptides. All four Glomo-sNPF peptides concentration-dependently activated Glomo-sNPFR in a cell-based calcium mobilization assay, with EC50 values in the nanomolar range. Gene expression profiles in adult female tsetse flies indicate that the Glomo-sNPF system is mainly restricted to the nervous system. Glomo-snpfr transcripts were also detected in the hindgut of adult females. In contrast to the Drosophila sNPF system, tsetse larvae lack expression of Glomo-snpf and Glomo-snpfr genes. While Glomo-snpf transcript levels are upregulated in pupae, the onset of Glomo-snpfr expression is delayed to adulthood. Expression profiles in adult tissues are similar to those in other insects suggesting that the tsetse sNPF system may have similar functions such as a regulatory role in feeding behavior, together with a possible involvement of sNPFR signaling in osmotic homeostasis. Our molecular data will enable further investigations into the functions of sNPF signaling in tsetse flies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: