Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Intrahepatic Expression of Fatty Acid Translocase CD36 Is Increased in Obstructive Sleep Apnea.

  • Esther Rey‎ et al.
  • Frontiers in medicine‎
  • 2020‎

Nocturnal intermittent hypoxia (IH) featuring obstructive sleep apnea (OSA) dysregulates hepatic lipid metabolism and might contribute to the development of non-alcoholic fatty liver disease (NAFLD) observed in OSA patients. However, further research is required to better understanding the molecular mechanisms underlying IH-induced hepatic lipid accumulation. Therefore, the aim of the present study was to determine the effects of OSA on hepatic CD36 expression and the impact of IH by using a mouse model of OSA. Histological analysis, lipid content and CD36 expression were assessed in livers from subjects who underwent liver biopsy and polygraphic study during sleep, and in livers from mice submitted to chronic IH mimicking OSA. Among those who presented OSA features, NAFLD were significantly more frequent than in control subjects with normal respiratory function (77.8 vs. 36.4%, respectively), and showed more severe liver disease. Interestingly, CD36 expression was significantly overexpressed within the liver of OSA patients with respect to controls, and a significant positive correlation was observed between hepatic levels of CD36 and the values of two well-known respiratory parameters that characterized OSA: apnea/hypopnea index (AHI) and oxygen desaturation index (ODI). Moreover, hepatic lipid accumulation as well as induction of hepatic lipogenic genes, and CD36 mRNA and protein expression were significantly higher in livers from mice exposed to IH conditions for 8 weeks than in their corresponding littermates. This study provides novel evidence that IH featuring OSA could contribute to NAFLD setup partly by upregulating hepatic CD36 expression.


Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea.

  • Antoni Vilaseca‎ et al.
  • PloS one‎
  • 2017‎

We investigate the effects of intermittent hypoxia (IH), a characteristic feature of obstructive sleep apnea (OSA), on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50) of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF) and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001) and circulating VEGF (p<0.001) in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages.


Heterogeneity of Melanoma Cell Responses to Sleep Apnea-Derived Plasma Exosomes and to Intermittent Hypoxia.

  • Abdelnaby Khalyfa‎ et al.
  • Cancers‎
  • 2021‎

Obstructive sleep apnea (OSA) is associated with increased cutaneous melanoma incidence and adverse outcomes. Exosomes are secreted by most cells, and play a role in OSA-associated tumor progression and metastasis. We aimed to study the effects of plasma exosomes from OSA patients before and after adherent treatment with continuous positive airway pressure (CPAP) on melanoma cells lines, and also to identify exosomal miRNAs from melanoma cells exposed to intermittent hypoxia (IH) or normoxia. Plasma-derived exosomes were isolated from moderate-to-severe OSA patients before (V1) and after (V2) adherent CPAP treatment for one year. Exosomes were co-incubated with three3 different melanoma cell lines (CRL 1424; CRL 1619; CRL 1675) that are characterized by genotypes involving different mutations in BRAF, STK11, CDKN2A, and PTEN genes to assess the effect of exosomes on cell proliferation and migration, as well as on pAMK activity in the presence or absence of a chemical activator. Subsequently, CRL-1424 and CRL-1675 cells were exposed to intermittent hypoxia (IH) and normoxia, and exosomal miRNAs were identified followed by GO and KEG pathways and gene networks. The exosomes from these IH-exposed melanoma cells were also administered to THP1 macrophages to examine changes in M1 and M2 polarity markers. Plasma exosomes from V1 increased CRL-1424 melanoma cell proliferation and migration compared to V2, but not the other two cell lines. Exposure to CRL-1424 exosomes reduced pAMPK/tAMPK in V1 compared to V2, and treatment with AMPK activator reversed the effects. Unique exosomal miRNAs profiles were identified for CRL-1424 and CRL-1675 in IH compared to normoxia, with six miRNAs being regulated and several KEGG pathways were identified. Two M1 markers (CXCL10 and IL6) were significantly increased in monocytes when treated with exosomes from IH-exposed CRL-1424 and CRL-1625 cells. Our findings suggest that exosomes from untreated OSA patients increase CRL-1424 melanoma malignant properties, an effect that is not observed in two other melanoma cell lines. Exosomal cargo from CRL-1424 cells showed a unique miRNA signature compared to CRL-1675 cells after IH exposures, suggesting that melanoma cells are differentially susceptible to IH, even if they retain similar effects on immune cell polarity. It is postulated that mutations in STK-11 gene encoding for the serine/threonine kinase family that acts as a tumor suppressor may underlie susceptibility to IH-induced metabolic dysfunction, as illustrated by CRL-1424 cells.


Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea.

  • Isaac Almendros‎ et al.
  • Respiratory research‎
  • 2010‎

Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA.


Acetylsalicylic Acid Prevents Intermittent Hypoxia-Induced Vascular Remodeling in a Murine Model of Sleep Apnea.

  • Monique C Suarez-Giron‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Study objectives: Chronic intermittent hypoxia (CIH), a hallmark feature of obstructive sleep apnea (OSA), induces accelerated atherogenesis as well as aorta vascular remodeling. Although the cyclooxygenase (COX) pathway has been proposed to contribute to the cardiovascular consequences of OSA, the potential benefits of a widely employed COX-inhibitor such (acetylsalicylic acid, ASA) on CIH-induced vascular pathology are unknown. Therefore, we hypothesized that a common non-selective COX inhibitor such as ASA would attenuate the aortic remodeling induced by CIH in mice. Methods: 40 wild-type C57/BL6 male mice were randomly allocated to CIH or normoxic exposures (N) and treated with daily doses of ASA or placebo for 6 weeks. At the end of the experiments, intima-media thickness (IMT), elastin disorganization (ED), elastin fragmentation (EF), length between fragmented fiber endpoints (LFF), aortic wall collagen abundance (AC) and mucoid deposition (MD) were assessed. Results: Compared to N, CIH promoted significant increases in IMT (52.58 ± 2.82 μm vs. 46.07 ± 4.18 μm, p < 0.003), ED (25.29 ± 14.60% vs. 4.74 ± 5.37%, p < 0.001), EF (5.80 ± 2.04 vs. 3.06 ± 0.58, p < 0.001), LFF (0.65 ± 0.34% vs. 0.14 ± 0.09%, p < 0.001), AC (3.43 ± 1.52% vs. 1.67 ± 0.67%, p < 0.001) and MD (3.40 ± 2.73 μm2 vs. 1.09 ± 0.72 μm2, p < 0.006). ASA treatment mitigated the CIH-induced alterations in IMT: 44.07 ± 2.73 μm; ED: 10.57 ± 12.89%; EF: 4.63 ± 0.88; LFF: 0.25 ± 0.17% and AC: 0.90 ± 0.13% (p<0.05 for all comparisons). Conclusions: ASA prevents the CIH-induced aortic vascular remodeling, and should therefore be prospectively evaluated as adjuvant treatment in patients with OSA.


A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea.

  • Noelia Campillo‎ et al.
  • Frontiers in physiology‎
  • 2016‎

Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.


Intermittent Hypoxia Mimicking Sleep Apnea Increases Passive Stiffness of Myocardial Extracellular Matrix. A Multiscale Study.

  • Núria Farré‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea (OSA), a very prevalent respiratory disease associated with increased cardiovascular morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH) mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and molecular levels. However, it remains unclear whether IH modifies the passive stiffness of the cardiac tissue extracellular matrix (ECM). Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of left ventricular (LV) myocardium in a murine model of OSA. Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20% O2 40 s-6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each age were kept under normoxia. Fresh LV myocardial strips (∼7 mm × 1 mm × 1 mm) were prepared, and their ECM was obtained by decellularization. Myocardium ECM macroscale mechanics were measured by performing uniaxial stress-strain tensile tests. Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain and Young's modulus (EM) computed at 0.2 strain by fitting Fung's constitutive model to the stress-strain relationship. ECM stiffness was characterized at the microscale as the Young's modulus (Em) measured in decellularized tissue slices (∼12 μm tick) by atomic force microscopy. Results: Intermittent hypoxia induced a ∼1.5-fold increase in σ (p < 0.001) and a ∼2.5-fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In contrast, no significant differences emerged in Em among IH-exposed and normoxic mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young and aged mice. Conclusion: The marked IH-induced increases in macroscale stiffness of LV myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM stiffness suggests that the significant increases in macroscale stiffening are primarily mediated by 3D structural ECM remodeling.


Aorta macrophage inflammatory and epigenetic changes in a murine model of obstructive sleep apnea: Potential role of CD36.

  • Rene Cortese‎ et al.
  • Scientific reports‎
  • 2017‎

Obstructive sleep apnea (OSA) affects 8-10% of the population, is characterized by chronic intermittent hypoxia (CIH), and causally associates with cardiovascular morbidities. In CIH-exposed mice, closely mimicking the chronicity of human OSA, increased accumulation and proliferation of pro-inflammatory metabolic M1-like macrophages highly expressing CD36, emerged in aorta. Transcriptomic and MeDIP-seq approaches identified activation of pro-atherogenic pathways involving a complex interplay of histone modifications in functionally-relevant biological pathways, such as inflammation and oxidative stress in aorta macrophages. Discontinuation of CIH did not elicit significant improvements in aorta wall macrophage phenotype. However, CIH-induced aorta changes were absent in CD36 knockout mice, Our results provide mechanistic insights showing that CIH exposures during sleep in absence of concurrent pro-atherogenic settings (i.e., genetic propensity or dietary manipulation) lead to the recruitment of CD36(+)high macrophages to the aortic wall and trigger atherogenesis. Furthermore, long-term CIH-induced changes may not be reversible with usual OSA treatment.


Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea.

  • Noelia Campillo‎ et al.
  • Scientific reports‎
  • 2017‎

An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2.


Obesity attenuates the effect of sleep apnea on active TGF-ß1 levels and tumor aggressiveness in patients with melanoma.

  • Carolina Cubillos-Zapata‎ et al.
  • Scientific reports‎
  • 2020‎

Active transforming growth factor-β1 (TGF-β1), a cytokine partially regulated by hypoxia and obesity, has been related with poor prognosis in several tumors. We determine whether obstructive sleep apnea (OSA) increases serum levels of active TGF-β1 in patients with cutaneous melanoma (CM), assess their relationship with melanoma aggressiveness and analyze the factors related to TGF-β1 levels in obese and non-obese OSA patients. In a multicenter observational study, 290 patients with CM were underwent sleep studies. TGF-β1 was increased in moderate-severe OSA patients vs. non-OSA or mild OSA patients with CM. In OSA patients, TGF-β1 levels correlated with mitotic index, Breslow index and melanoma growth rate, and were increased in presence of ulceration or higher Clark levels. In CM patients, OSA was associated with higher TGF-β1 levels and greater melanoma aggressiveness only in non-obese subjects. An in vitro model showed that IH-induced increases of TGF-β1 expression in melanoma cells is attenuated in the presence of high leptin levels. In conclusion, TGF-β1 levels are associated with melanoma aggressiveness in CM patients and increased in moderate-severe OSA. Moreover, in non-obese patients with OSA, TGF-β1 levels correlate with OSA severity and leptin levels, whereas only associate with leptin levels in obese OSA patients.


Fast cycling of intermittent hypoxia in a physiomimetic 3D environment: A novel tool for the study of the parenchymal effects of sleep apnea.

  • Alicia Jurado‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Background: Patients with obstructive sleep apnea (OSA) experience recurrent hypoxemic events with a frequency sometimes exceeding 60 events/h. These episodic events induce downstream transient hypoxia in the parenchymal tissue of all organs, thereby eliciting the pathological consequences of OSA. Whereas experimental models currently apply intermittent hypoxia to cells conventionally cultured in 2D plates, there is no well-characterized setting that will subject cells to well-controlled intermittent hypoxia in a 3D environment and enable the study of the effects of OSA on the cells of interest while preserving the underlying tissue environment. Aim: To design and characterize an experimental approach that exposes cells to high-frequency intermittent hypoxia mimicking OSA in 3D (hydrogels or tissue slices). Methods: Hydrogels made from lung extracellular matrix (L-ECM) or brain tissue slices (300-800-μm thickness) were placed on a well whose bottom consisted of a permeable silicone membrane. The chamber beneath the membrane was subjected to a square wave of hypoxic/normoxic air. The oxygen concentration at different depths within the hydrogel/tissue slice was measured with an oxygen microsensor. Results: 3D-seeded cells could be subjected to well-controlled and realistic intermittent hypoxia patterns mimicking 60 apneas/h when cultured in L-ECM hydrogels ≈500 μm-thick or ex-vivo in brain slices 300-500 μm-thick. Conclusion: This novel approach will facilitate the investigation of the effects of intermittent hypoxia simulating OSA in 3D-residing cells within the parenchyma of different tissues/organs.


Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: Effects of physical activity.

  • Abdelnaby Khalyfa‎ et al.
  • EBioMedicine‎
  • 2021‎

Gut microbiota (GM) contribute to obesity and insulin resistance (IR). Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), promotes IR and alters GM. Since circulating exosomes are implicated in IR, we examined the effects of IH and physical activity (PA) in mice on GM, colonic epithelium permeability, systemic IR, and plasma exosome cargo, and exosome effects on visceral white adipose tissues (vWAT) IR.


Aortic remodelling induced by obstructive apneas is normalized with mesenchymal stem cells infusion.

  • Cira Rubies‎ et al.
  • Scientific reports‎
  • 2019‎

Obstructive sleep apnea syndrome (OSA) promotes aortic dilatation, increased stiffness and accelerated atherosclerosis, but the mechanisms of vascular remodelling are not known. We aimed to assess vascular remodelling, its mechanisms, and the effect of mesenchymal stem cells (MSC) infusions in a clinically relevant rat model of chronic OSA involving recurrent airway obstructions leading thoracic pressure swings and intermittent hypoxia/hypercapnia (OSA-rats). Another group of rats were placed in the same setup without air obstructions (Sham-rats) and were considered controls. Our study demonstrates that chronic, non-invasive repetitive airway obstructions mimicking OSA promote remarkable structural changes of the descending thoracic aorta such as eccentric aortic hypertrophy due to an increased wall thickness and lumen diameter, an increase in the number of elastin fibers which, in contrast, get ruptured, but no changes in tunica media fibrosis. As putative molecular mechanisms of the OSA-induced vascular changes we identified an increase in reactive oxygen species and renin-angiotensin system markers and an imbalance in oxide nitric synthesis. Our results also indicate that MSC infusion blunts the OSA-related vascular changes, most probably due to their anti-inflammatory properties.


Tumor circulating DNA profiling in xenografted mice exposed to intermittent hypoxia.

  • Rene Cortese‎ et al.
  • Oncotarget‎
  • 2015‎

Intermittent hypoxia (IH) a hallmark characteristic of obstructive sleep apnea (OSA), is proposed as a major determinant of processes involving tumor growth, invasion and metastasis. To examine whether circulating DNA (cirDNA) in blood plasma reflects changes in tumor cells under IH conditions, we used a xenografted murine model. Mice engrafted with TC1 epithelial lung cancer cells and controls were exposed to IH or room air (RA) conditions. Plasma cirDNA amounts were significantly increased in mice exposed to IH (p<0.05). Significant associations between plasma cirDNA concentrations and tumor size, weight and invasiveness also emerged (p<0.05). Using a methylation microarray-based approach, we identified 2,094 regions showing significant differential cirDNA modifications. Systems biology analyses revealed an association with molecular pathways deregulated in cancer progression and with distal and TSS-associated transcription factor binding sites. We detected clusters of highly variable regions in chromosomes 7, 13, 14 and X, which may highlight hotspots for DNA deletions. Single locus displayed high intragroup variation, suggesting cellular heterogeneity within the tissue may be associated to cirDNA release. Thus, exposures to IH increase the shedding of cirDNA into circulation, which carries epigenetic modifications that may characterize cell populations within the tumor that preferentially release their DNA upon IH exposure.


Adipose tissue macrophage polarization by intermittent hypoxia in a mouse model of OSA: effect of tumor microenvironment.

  • Isaac Almendros‎ et al.
  • Cancer letters‎
  • 2015‎

Intermittent hypoxia (IH)-induces alterations in tumor-associated macrophages (TAMs) that are associated with adverse cancer outcomes, as reported in patients suffering from sleep apnea. Adipose tissues (AT) and bone-marrow (BM)-derived cells are the inferred sources of macrophages infiltrating malignant tumors. Here, the sources of TAMs and the phenotypic changes induced by IH in the ipsilateral and contralateral AT were investigated by using a syngeneic murine solid tumor model (TC1). C57/B6 male mice were exposed to either IH or room air (RA) for 6 weeks, with TC1 cells being inoculated in the 2nd week. Macrophage content, phenotype and tissue origin were assessed in tumors, and ipsilateral and contralateral AT. IH induced a ~2.2-fold increase in TAM tumor infiltration. However, differential responses in the tumor ipsilateral and contralateral AT emerged: IH increased infiltration of preferentially M1 macrophages in contralateral AT, while reductions in macrophages emerged in ipsilateral AT and primarily consisted of the M2 phenotype. These changes were accompanied by reciprocal increases in resident and BM-derived TAMs in the tumor. IH-induced phenotypic alterations in AT macrophages surrounding the tumor and their increased infiltration within the tumor may contribute to the accelerated tumor progression associated with IH.


Microarray-based analysis of plasma cirDNA epigenetic modification profiling in xenografted mice exposed to intermittent hypoxia.

  • Rene Cortese‎ et al.
  • Genomics data‎
  • 2015‎

Intermittent hypoxia (IH) during sleep is one of the major abnormalities occurring in patients suffering from obstructive sleep apnea (OSA), a highly prevalent disorder affecting 6-15% of the general population, particularly among obese people. IH has been proposed as a major determinant of oncogenetically-related processes such as tumor growth, invasion and metastasis. During the growth and expansion of tumors, fragmented DNA is released into the bloodstream and enters the circulation. Circulating tumor DNA (cirDNA) conserves the genetic and epigenetic profiles from the tumor of origin and can be isolated from the plasma fraction. Here we report a microarray-based epigenetic profiling of cirDNA isolated from blood samples of mice engrafted with TC1 epithelial lung cancer cells and controls, which were exposed to IH during sleep (XenoIH group, n = 3) or control conditions, (i.e., room air (RA); XenoRA group, n = 3) conditions. To prepare the targets for microarray hybridization, we applied a previously developed method that enriches the modified fraction of the cirDNA without amplification of genomic DNA. Regions of differential cirDNA modification between the two groups were identified by hybridizing the enriched fractions for each sample to Affymetrix GeneChip Human Promoter Arrays 1.0R. Microarray raw and processed data were deposited in NCBI's Gene Expression Omnibus (GEO) database (accession number: GSE61070).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: