Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma.

  • Iris Helfrich‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Angiogenesis is not only dependent on endothelial cell invasion and proliferation, it also requires pericyte coverage of vascular sprouts for stabilization of vascular walls. Clinical efficacy of angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway is still limited to date. We hypothesized that the level of vessel maturation is critically involved in the response to antiangiogenic therapies. To test this hypothesis, we evaluated the vascular network in spontaneously developing melanomas of MT/ret transgenic mice after using PTK787/ZK222584 for anti-VEGF therapy but also analyzed human melanoma metastases taken at clinical relapse in patients undergoing adjuvant treatment using bevacizumab. Both experimental settings showed that tumor vessels, which are resistant to anti-VEGF therapy, are characterized by enhanced vessel diameter and normalization of the vascular bed by coverage of mature pericytes and immunoreactivity for desmin, NG-2, platelet-derived growth factor receptor beta, and the late-stage maturity marker alpha smooth muscle actin. Our findings emphasize that the level of mural cell differentiation and stabilization of the vascular wall significantly contribute to the response toward antiangiogenic therapy in melanoma. This study may be useful in paving the way toward a more rational development of second generation antiangiogenic combination therapies and in providing, for the first time, a murine model to study this.


Regulation of hematogenous tumor metastasis by acid sphingomyelinase.

  • Alexander Carpinteiro‎ et al.
  • EMBO molecular medicine‎
  • 2015‎

Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1(-/-) mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of α5β1 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing β1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis.


Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells.

  • Sven Christian‎ et al.
  • The American journal of pathology‎
  • 2008‎

Endosialin (Tem1) has been identified by two independent experimental approaches as an antigen of tumor-associated endothelial cells, and it has been claimed to be the most abundantly expressed tumor endothelial antigen, making it a prime candidate for vascular targeting purposes. Recent experiments have challenged the endothelial expression of endosialin and suggested an expression by activated fibroblasts and pericytes. Thus, clarification of the controversial cellular expression of endosialin is critically important for an understanding of its role during tumor progression and its validation as a potential therapeutic target. We have therefore performed extensive expression profiling analyses of endosialin. The experiments unambiguously demonstrate that endosialin is expressed by tumor-associated myofibroblasts and mural cells and not by endothelial cells. Endosialin expression is barely detectable in normal human tissues with moderate expression only detectable in the stroma of the colon and the prostate. Corresponding cellular experiments confirmed endosialin expression by mesenchymal cells and indicated that it may in fact be a marker of mesenchymal stem cells. Silencing endosialin expression in fibroblasts strongly inhibited migration and proliferation. Collectively, the experiments validate endosialin as a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. The data warrant further functional analysis of endosialin during tumor progression and its exploitation as marker of tumor vessel-associated mural cells, expression of which may reflect the non-normalized phenotype of the tumor vasculature.


Spatiotemporally restricted arenavirus replication induces immune surveillance and type I interferon-dependent tumour regression.

  • Halime Kalkavan‎ et al.
  • Nature communications‎
  • 2017‎

Immune-mediated effector molecules can limit cancer growth, but lack of sustained immune activation in the tumour microenvironment restricts antitumour immunity. New therapeutic approaches that induce a strong and prolonged immune activation would represent a major immunotherapeutic advance. Here we show that the arenaviruses lymphocytic choriomeningitis virus (LCMV) and the clinically used Junin virus vaccine (Candid#1) preferentially replicate in tumour cells in a variety of murine and human cancer models. Viral replication leads to prolonged local immune activation, rapid regression of localized and metastatic cancers, and long-term disease control. Mechanistically, LCMV induces antitumour immunity, which depends on the recruitment of interferon-producing Ly6C+ monocytes and additionally enhances tumour-specific CD8+ T cells. In comparison with other clinically evaluated oncolytic viruses and to PD-1 blockade, LCMV treatment shows promising antitumoural benefits. In conclusion, therapeutically administered arenavirus replicates in cancer cells and induces tumour regression by enhancing local immune responses.


Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth.

  • Johanna C Klein‎ et al.
  • Nature communications‎
  • 2017‎

Toll-like receptors (TLRs) are located either on the cell surface or intracellularly in endosomes and their activation normally contributes to the induction of protective immune responses. However, in cancer their activation by endogenous ligands can modulate tumour progression. It is currently unknown how endosomal TLRs regulate endogenous anti-tumour immunity. Here we show that TLR3, 7 and 9 deficiencies on host cells, after initial tumour growth, result in complete tumour regression and induction of anti-tumour immunity. Tumour regression requires the combined absence of all three receptors, is dependent on both CD4 and CD8 T cells and protects the mice from subsequent tumour challenge. While tumours in control mice are infiltrated by higher numbers of regulatory T cells, tumour regression in TLR-deficient mice is paralleled by altered vascular structure and strongly induced influx of cytotoxic and cytokine-producing effector T cells. Thus, endosomal TLRs may represent a molecular link between the inflamed tumour cell phenotype, anti-tumour immunity and the regulation of T-cell activation.


Rapid and fully automated blood vasculature analysis in 3D light-sheet image volumes of different organs.

  • Philippa Spangenberg‎ et al.
  • Cell reports methods‎
  • 2023‎

Light-sheet fluorescence microscopy (LSFM) can produce high-resolution tomograms of tissue vasculature with high accuracy. However, data processing and analysis is laborious due to the size of the datasets. Here, we introduce VesselExpress, an automated software that reliably analyzes six characteristic vascular network parameters including vessel diameter in LSFM data on average computing hardware. VesselExpress is ∼100 times faster than other existing vessel analysis tools, requires no user interaction, and integrates batch processing and parallelization. Employing an innovative dual Frangi filter approach, we show that obesity induces a large-scale modulation of brain vasculature in mice and that seven other major organs differ strongly in their 3D vascular makeup. Hence, VesselExpress transforms LSFM from an observational to an analytical working tool.


CEACAM1-4L Promotes Anchorage-Independent Growth in Melanoma.

  • Stefanie Löffek‎ et al.
  • Frontiers in oncology‎
  • 2015‎

Widespread metastasis is the leading course of death in many types of cancer, including malignant melanoma. The process of metastasis can be divided into a number of complex cell biological events, collectively termed the "invasion-metastasis cascade." Previous reports have characterized the capability of anchorage-independent growth of cancer cells in vitro as a key characteristic of highly aggressive tumor cells, particularly with respect to metastatic potential. Biological heterogeneity as well as drastic alterations in cell adhesion of disseminated cancer cells support escape mechanisms for metastases to overcome conventional therapies. Here, we show that exclusively the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) splice variant CEACAM1-4L supports an anchorage-independent signature in malignant melanoma. These results highlight important variant-specific modulatory functions of CEACAM1 for metastatic spread in patients suffering malignant melanoma.


Persister state-directed transitioning and vulnerability in melanoma.

  • Heike Chauvistré‎ et al.
  • Nature communications‎
  • 2022‎

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.


Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia.

  • Ralph Klose‎ et al.
  • Nature communications‎
  • 2016‎

Chemotherapy remains a mainstay of cancer treatment but its use is often limited by the development of adverse reactions. Severe loss of body weight (cachexia) is a frequent cause of death in cancer patients and is exacerbated by chemotherapy. We show that genetic inactivation of vascular endothelial growth factor (VEGF)-A in myeloid cells prevents chemotherapy-induced cachexia by inhibiting skeletal muscle loss and the lipolysis of white adipose tissue. It also improves clearance of senescent tumour cells by natural killer cells and inhibits tumour regrowth after chemotherapy. The effects depend on the chemoattractant chemerin, which is released by the tumour endothelium in response to chemotherapy. The findings define chemerin as a critical mediator of the immune response, as well as an important inhibitor of cancer cachexia. Targeting myeloid cell-derived VEGF signalling should impede the lipolysis and weight loss that is frequently associated with chemotherapy, thereby substantially improving the therapeutic outcome.


Sequence-Selective Covalent CaaX-Box Receptors Prevent Farnesylation of Oncogenic Ras Proteins and Impact MAPK/PI3 K Signaling.

  • Matthias Franz‎ et al.
  • ChemMedChem‎
  • 2021‎

Oncogenic Ras proteins are implicated in the most common life-threatening cancers. Despite intense research over the past two decades, the progress towards small-molecule inhibitors has been limited. One reason for this failure is that Ras proteins interact with their effectors only via protein-protein interactions, which are notoriously difficult to address with small organic molecules. Herein we describe an alternative strategy, which prevents farnesylation and subsequent membrane insertion, a prerequisite for the activation of Ras proteins. Our approach is based on sequence-selective supramolecular receptors which bind to the C-terminal farnesyl transferase recognition unit of Ras and Rheb proteins and covalently modify the essential cysteine in the so-called CaaX-box.


Active Remodeling of Capillary Endothelium via Cancer Cell-Derived MMP9 Promotes Metastatic Brain Colonization.

  • Matthia A Karreman‎ et al.
  • Cancer research‎
  • 2023‎

Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization. Successful extravasation of arrested cancer cells occurred when adjacent capillary endothelial cells (EC) entered into a distinct remodeling process. After extravasation, capillary loops were formed, which was characteristic of aggressive metastatic growth. Upon cancer cell arrest in brain microcapillaries, matrix-metalloprotease 9 (MMP9) was expressed. Inhibition of MMP2/9 and genetic perturbation of MMP9 in cancer cells, but not the host, reduced EC projections, extravasation, and brain metastasis outgrowth. These findings establish an active role of ECs in the process of cancer cell extravasation, facilitated by cross-talk between the two cell types. This extends our understanding of how host cells can contribute to brain metastasis formation and how to prevent it.


Germ line variant GFI1-36N affects DNA repair and sensitizes AML cells to DNA damage and repair therapy.

  • Daria Frank‎ et al.
  • Blood‎
  • 2023‎

Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth.

  • Wiebke Hansen‎ et al.
  • The Journal of experimental medicine‎
  • 2012‎

Infiltration of Foxp3(+) regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3(+) T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell-specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3(+) T reg cells were significantly reduced accompanied by enhanced activation of CD8(+) T cells within tumors of T cell-specific Nrp-1-deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1(+) T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3(+) T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression.


SimFFPE and FilterFFPE: improving structural variant calling in FFPE samples.

  • Lanying Wei‎ et al.
  • GigaScience‎
  • 2021‎

Artifact chimeric reads are enriched in next-generation sequencing data generated from formalin-fixed paraffin-embedded (FFPE) samples. Previous work indicated that these reads are characterized by erroneous split-read support that is interpreted as evidence of structural variants. Thus, a large number of false-positive structural variants are detected. To our knowledge, no tool is currently available to specifically call or filter structural variants in FFPE samples. To overcome this gap, we developed 2 R packages: SimFFPE and FilterFFPE.


Interleukin 17 signaling supports clinical benefit of dual CTLA-4 and PD-1 checkpoint inhibition in melanoma.

  • Renáta Váraljai‎ et al.
  • Nature cancer‎
  • 2023‎

Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.


ComplexEye: a multi-lens array microscope for high-throughput embedded immune cell migration analysis.

  • Zülal Cibir‎ et al.
  • Nature communications‎
  • 2023‎

Autonomous migration is essential for the function of immune cells such as neutrophils and plays an important role in numerous diseases. The ability to routinely measure or target it would offer a wealth of clinical applications. Video microscopy of live cells is ideal for migration analysis, but cannot be performed at sufficiently high-throughput (HT). Here we introduce ComplexEye, an array microscope with 16 independent aberration-corrected glass lenses spaced at the pitch of a 96-well plate to produce high-resolution movies of migrating cells. With the system, we enable HT migration analysis of immune cells in 96- and 384-well plates with very energy-efficient performance. We demonstrate that the system can measure multiple clinical samples simultaneously. Furthermore, we screen 1000 compounds and identify 17 modifiers of migration in human neutrophils in just 4 days, a task that requires 60-times longer with a conventional video microscope. ComplexEye thus opens the field of phenotypic HT migration screens and enables routine migration analysis for the clinical setting.


Patient-specific analysis of co-expression to measure biological network rewiring in individuals.

  • Lanying Wei‎ et al.
  • Life science alliance‎
  • 2024‎

To effectively understand the underlying mechanisms of disease and inform the development of personalized therapies, it is critical to harness the power of differential co-expression (DCE) network analysis. Despite the promise of DCE network analysis in precision medicine, current approaches have a major limitation: they measure an average differential network across multiple samples, which means the specific etiology of individual patients is often overlooked. To address this, we present Cosinet, a DCE-based single-sample network rewiring degree quantification tool. By analyzing two breast cancer datasets, we demonstrate that Cosinet can identify important differences in gene co-expression patterns between individual patients and generate scores for each individual that are significantly associated with overall survival, recurrence-free interval, and other clinical outcomes, even after adjusting for risk factors such as age, tumor size, HER2 status, and PAM50 subtypes. Cosinet represents a remarkable development toward unlocking the potential of DCE analysis in the context of precision medicine.


A prospective, randomized, double-blind, placebo-controlled trial of acute postoperative pain treatment using opioid analgesics with intravenous ibuprofen after radical cervical cancer surgery.

  • Xintong Liu‎ et al.
  • Scientific reports‎
  • 2018‎

This study assessed the efficacy and tolerability of intravenous ibuprofen in the improvement of post-operative pain control and the reduction of opioid usage. Patients were randomly divided into placebo, ibuprofen 400 mg and ibuprofen 800 mg groups. All patients received patient-controlled intravenous morphine analgesia after surgery. The first dose of study drugs was administered intravenously 30 min before the end of surgery and then every 6 hours, for a total of 8 doses after surgery. The primary endpoint of this study was the mean amount of morphine used during the first 24 hours after surgery. Morphine use was reduced significantly in the ibuprofen 800 mg group compared with the placebo group (P = 0.04). Tramadol use was reduced significantly in the ibuprofen 400 mg and ibuprofen 800 mg groups compared with the placebo group (P < 0.01). The area under the curve of visual analog scale pain ratings was not different between groups. Safety assessments and side effects were not different between the three groups. Intravenous ibuprofen 800 mg was associated with a significant reduction in morphine requirements, and it was generally well tolerated for postoperative pain management in patients undergoing radical cervical cancer surgery.


NK cell-intrinsic FcεRIγ limits CD8+ T-cell expansion and thereby turns an acute into a chronic viral infection.

  • Vikas Duhan‎ et al.
  • PLoS pathogens‎
  • 2019‎

During viral infection, tight regulation of CD8+ T-cell functions determines the outcome of the disease. Recently, others and we determined that the natural killer (NK) cells kill hyperproliferative CD8+ T cells in the context of viral infection, but molecules that are involved in shaping the regulatory capability of NK cells remain virtually unknown. Here we used mice lacking the Fc-receptor common gamma chain (FcRγ, FcεRIγ, Fcer1g-/- mice) to determine the role of Fc-receptor and NK-receptor signaling in the process of CD8+ T-cell regulation. We found that the lack of FcRγ on NK cells limits their ability to restrain virus-specific CD8+ T cells and that the lack of FcRγ in Fcer1g-/- mice leads to enhanced CD8+ T-cell responses and rapid control of the chronic docile strain of the lymphocytic choriomeningitis virus (LCMV). Mechanistically, FcRγ stabilized the expression of NKp46 but not that of other killer cell-activating receptors on NK cells. Although FcRγ did not influence the development or activation of NK cell during LCMV infection, it specifically limited their ability to modulate CD8+ T-cell functions. In conclusion, we determined that FcRγ plays an important role in regulating CD8+ T-cell functions during chronic LCMV infection.


Dose-dependent effect of GFI1 expression in the reconstitution and the differentiation capacity of HSCs.

  • Xiaoqing Xie‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: