Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Enzymatic Synthesis of 2-Chloropurine Arabinonucleosides with Chiral Amino Acid Amides at the C6 Position and an Evaluation of Antiproliferative Activity In Vitro.

  • Barbara Z Eletskaya‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

A number of purine arabinosides containing chiral amino acid amides at the C6 position of the purine were synthesized using a transglycosylation reaction with recombinant E. coli nucleoside phosphorylases. Arsenolysis of 2-chloropurine ribosides with chiral amino acid amides at C6 was used for the enzymatic synthesis, and the reaction equilibrium shifted towards the synthesis of arabinonucleosides. The synthesized nucleosides were shown to be resistant to the action of E. coli adenosine deaminase. The antiproliferative activity of the synthesized nucleosides was studied on human acute myeloid leukemia cell line U937. Among all the compounds, the serine derivative exhibited an activity level (IC50 = 16 μM) close to that of Nelarabine (IC50 = 3 μM) and was evaluated as active.


Radical Dehalogenation and Purine Nucleoside Phosphorylase E. coli: How Does an Admixture of 2',3'-Anhydroinosine Hinder 2-fluoro-cordycepin Synthesis.

  • Alexey L Kayushin‎ et al.
  • Biomolecules‎
  • 2021‎

During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3'-deoxyinosine catalyzed by E. coli purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2',3'-anhydroinosine, a byproduct in the preparation of 3-'deoxyinosine. Moreover, 2',3'-anhydroinosine forms during radical dehalogenation of 9-(2',5'-di-O-acetyl-3'-bromo- -3'-deoxyxylofuranosyl)hypoxanthine, a precursor of 3'-deoxyinosine in chemical synthesis. The products of 2',3'-anhydroinosine hydrolysis inhibit the formation of 1-phospho-3-deoxyribose during the synthesis of 2-fluorocordycepin. The progress of 2',3'-anhydroinosine hydrolysis was investigated. The reactions were performed in D2O instead of H2O; this allowed accumulating intermediate substances in sufficient quantities. Two intermediates were isolated and their structures were confirmed by mass and NMR spectroscopy. A mechanism of 2',3'-anhydroinosine hydrolysis in D2O is fully determined for the first time.


Thermophilic phosphoribosyltransferases Thermus thermophilus HB27 in nucleotide synthesis.

  • Ilja V Fateev‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2018‎

Phosphoribosyltransferases are the tools that allow the synthesis of nucleotide analogues using multi-enzymatic cascades. The recombinant adenine phosphoribosyltransferase (TthAPRT) and hypoxanthine phosphoribosyltransferase (TthHPRT) from Thermus thermophilus HB27 were expressed in E.coli strains and purified by chromatographic methods with yields of 10-13 mg per liter of culture. The activity dependence of TthAPRT and TthHPRT on different factors was investigated along with the substrate specificity towards different heterocyclic bases. The kinetic parameters for TthHPRT with natural substrates were determined. Two nucleotides were synthesized: 9-(β-D-ribofuranosyl)-2-chloroadenine 5'-monophosphate (2-Сl-AMP) using TthAPRT and 1-(β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidine-4-one 5'-monophosphate (Allop-MP) using TthНPRT.


The chemoenzymatic synthesis of clofarabine and related 2'-deoxyfluoroarabinosyl nucleosides: the electronic and stereochemical factors determining substrate recognition by E. coli nucleoside phosphorylases.

  • Ilja V Fateev‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2014‎

Two approaches to the synthesis of 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine (1, clofarabine) were studied. The first approach consists in the chemical synthesis of 2-deoxy-2-fluoro-α-D-arabinofuranose-1-phosphate (12a, (2F)Ara-1P) via three step conversion of 1,3,5-tri-O-benzoyl-2-deoxy-2-fluoro-α-D-arabinofuranose (9) into the phosphate 12a without isolation of intermediary products. Condensation of 12a with 2-chloroadenine catalyzed by the recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of clofarabine in 67% yield. The reaction was also studied with a number of purine bases (2-aminoadenine and hypoxanthine), their analogues (5-aza-7-deazaguanine and 8-aza-7-deazahypoxanthine) and thymine. The results were compared with those of a similar reaction with α-D-arabinofuranose-1-phosphate (13a, Ara-1P). Differences of the reactivity of various substrates were analyzed by ab initio calculations in terms of the electronic structure (natural purines vs analogues) and stereochemical features ((2F)Ara-1P vs Ara-1P) of the studied compounds to determine the substrate recognition by E. coli nucleoside phosphorylases. The second approach starts with the cascade one-pot enzymatic transformation of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a, followed by its condensation with 2-chloroadenine thereby affording clofarabine in ca. 48% yield in 24 h. The following recombinant E. coli enzymes catalyze the sequential conversion of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a: ribokinase (2-deoxy-2-fluoro-D-arabinofuranose-5-phosphate), phosphopentomutase (PPN; no 1,6-diphosphates of D-hexoses as co-factors required) (12a), and finally PNP. The substrate activities of D-arabinose, D-ribose and D-xylose in the similar cascade syntheses of the relevant 2-chloroadenine nucleosides were studied and compared with the activities of 2-deoxy-2-fluoro-D-arabinose. As expected, D-ribose exhibited the best substrate activity [90% yield of 2-chloroadenosine (8) in 30 min], D-arabinose reached an equilibrium at a concentration of ca. 1:1 of a starting base and the formed 2-chloro-9-(β-D-arabinofuranosyl)adenine (6) in 45 min, the formation of 2-chloro-9-(β-D-xylofuranosyl)adenine (7) proceeded very slowly attaining ca. 8% yield in 48 h.


Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways.

  • Ilja V Fateev‎ et al.
  • Biomolecules‎
  • 2021‎

A comparative study of the possibilities of using ribokinase → phosphopentomutase → nucleoside phosphorylase cascades in the synthesis of modified nucleosides was carried out. Recombinant phosphopentomutase from Thermus thermophilus HB27 was obtained for the first time: a strain producing a soluble form of the enzyme was created, and a method for its isolation and chromatographic purification was developed. It was shown that cascade syntheses of modified nucleosides can be carried out both by the mesophilic and thermophilic routes from D-pentoses: ribose, 2-deoxyribose, arabinose, xylose, and 2-deoxy-2-fluoroarabinose. The efficiency of 2-chloradenine nucleoside synthesis decreases in the following order: Rib (92), dRib (74), Ara (66), F-Ara (8), and Xyl (2%) in 30 min for mesophilic enzymes. For thermophilic enzymes: Rib (76), dRib (62), Ara (32), F-Ara (<1), and Xyl (2%) in 30 min. Upon incubation of the reaction mixtures for a day, the amounts of 2-chloroadenine riboside (thermophilic cascade), 2-deoxyribosides (both cascades), and arabinoside (mesophilic cascade) decreased roughly by half. The conversion of the base to 2-fluoroarabinosides and xylosides continued to increase in both cases and reached 20-40%. Four nucleosides were quantitatively produced by a cascade of enzymes from D-ribose and D-arabinose. The ribosides of 8-azaguanine (thermophilic cascade) and allopurinol (mesophilic cascade) were synthesized. For the first time, D-arabinosides of 2-chloro-6-methoxypurine and 2-fluoro-6-methoxypurine were synthesized using the mesophilic cascade. Despite the relatively small difference in temperatures when performing the cascade reactions (50 and 80 °C), the rate of product formation in the reactions with Escherichia coli enzymes was significantly higher. E. coli enzymes also provided a higher content of the target products in the reaction mixture. Therefore, they are more appropriate for use in the polyenzymatic synthesis of modified nucleosides.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: