Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign.

  • Eldin Talundzic‎ et al.
  • PLoS pathogens‎
  • 2015‎

The recent emergence of artemisinin resistance in the Greater Mekong Subregion poses a major threat to the global effort to control malaria. Tracking the spread and evolution of artemisinin-resistant parasites is critical in aiding efforts to contain the spread of resistance. A total of 417 patient samples from the year 2007, collected during malaria surveillance studies across ten provinces in Thailand, were genotyped for the candidate Plasmodium falciparum molecular marker of artemisinin resistance K13. Parasite genotypes were examined for K13 propeller mutations associated with artemisinin resistance, signatures of positive selection, and for evidence of whether artemisinin-resistant alleles arose independently across Thailand. A total of seven K13 mutant alleles were found (N458Y, R539T, E556D, P574L, R575K, C580Y, S621F). Notably, the R575K and S621F mutations have previously not been reported in Thailand. The most prevalent artemisinin resistance-associated K13 mutation, C580Y, carried two distinct haplotype profiles that were separated based on geography, along the Thai-Cambodia and Thai-Myanmar borders. It appears these two haplotypes may have independent evolutionary origins. In summary, parasites with K13 propeller mutations associated with artemisinin resistance were widely present along the Thai-Cambodia and Thai-Myanmar borders prior to the implementation of the artemisinin resistance containment project in the region.


Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax.

  • Eldin Talundzic‎ et al.
  • PloS one‎
  • 2015‎

Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.


Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites.

  • Naomi W Lucchi‎ et al.
  • Scientific reports‎
  • 2016‎

Isothermal nucleic acid amplification assays such as the loop mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to amplify the DNA. To further facilitate the use of LAMP assays in remote settings, simpler sample preparation methods and lyophilized reagents are required. The performance of a commercial malaria LAMP assay (Illumigene Malaria LAMP) was evaluated using two sample preparation workflows (simple filtration prep (SFP)) and gravity-driven filtration prep (GFP)) and pre-dispensed lyophilized reagents. Laboratory and clinical samples were tested in a field laboratory in Senegal and the results independently confirmed in a reference laboratory in the U.S.A. The Illumigene Malaria LAMP assay was easily implemented in the clinical laboratory and gave similar results to a real-time PCR reference test with limits of detection of ≤2.0 parasites/μl depending on the sample preparation method used. This assay reliably detected Plasmodium sp. parasites in a simple low-tech format, providing a much needed alternative to the more complex molecular tests for malaria diagnosis.


Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

  • Joseph F Abdallah‎ et al.
  • Malaria journal‎
  • 2015‎

Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites.


Variation in Plasmodium falciparum Histidine-Rich Protein 2 (Pfhrp2) and Plasmodium falciparum Histidine-Rich Protein 3 (Pfhrp3) Gene Deletions in Guyana and Suriname.

  • Sheila Akinyi Okoth‎ et al.
  • PloS one‎
  • 2015‎

Guyana and Suriname have made important progress in reducing the burden of malaria. While both countries use microscopy as the primary tool for clinical diagnosis, malaria rapid diagnostic tests (RDTs) are useful in remote areas of the interior where laboratory support may be limited or unavailable. Recent reports indicate that histidine-rich protein 2 (PfHRP2)-based diagnostic tests specific for detection of P. falciparum may provide false negative results in some parts of South America due to the emergence of P. falciparum parasites that lack the pfhrp2 gene, and thus produce no PfHRP2 antigen. Pfhrp2 and pfhrp3 genes were amplified in parasite isolates collected from Guyana and Suriname to determine if there were circulating isolates with deletions in these genes. Pfhrp3 deletions were monitored because some monoclonal antibodies utilized in PfHRP2-based RDTs cross-react with the PfHRP3 protein. We found that all 97 isolates from Guyana that met the inclusion criteria were both pfhrp2- and pfhrp3-positive. In Suriname (N = 78), 14% of the samples tested were pfhrp2-negative while 4% were pfhrp3-negative. Furthermore, analysis of the genomic region proximal to pfhrp2 and pfhrp3 revealed that genomic deletions extended to the flanking genes. We also investigated the population substructure of the isolates collected to determine if the parasites that had deletions of pfhrp2 and pfhrp3 belonged to any genetic subtypes. Cluster analysis revealed that there was no predominant P. falciparum population substructure among the isolates from either country, an indication of genetic admixture among the parasite populations. Furthermore, the pfhrp2-deleted parasites from Suriname did not appear to share a single, unique genetic background.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: