Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Impaired Kv7 channel function in cerebral arteries of a tauopathy mouse model (rTg4510).

  • Inge E M de Jong‎ et al.
  • Physiological reports‎
  • 2018‎

In tauopathies, such as Alzheimer's disease with or without concomitant amyloid β plaques, cerebral arteries display pathological remodeling, leading to reduced brain tissue oxygenation and cognitive impairment. The precise mechanisms that underlie this vascular dysfunction remain unclear. Kv7 voltage-dependent K+ channels contribute to the development of myogenic tone in rat cerebral arteries. Thus, we hypothesized that Kv7 channel function would be impaired in the cerebral arteries of a tauopathy mouse model (rTg4510), which might underlie cerebral hypoperfusion associated with the development of neurofibrillary tangles in tauopathies. To test our hypothesis we performed wire myography and quantitative PCR on cerebral arteries, mesenteric arteries and the inferior frontotemporal region of the brain surrounding the middle cerebral artery from tau transgenic mice (rTg4510) and aged-matched controls. We also performed whole-cell patch clamp experiments on HEK293 cells stably expressing Kv7.4. Here, we show that Kv7 channels are functionally impaired in the cerebral arteries of rTg4510 mice, but not in mesenteric arteries from the same mice. The quantitative PCR analysis of the cerebral arteries found no change in the expression of the genes encoding the Kv7 channel α-subunits, however, we found reduced expression of the ancillary subunit, KCNE5 (also termed KCNE1L), in the cerebral arteries of rTg4510 mice. In the brain, rTg4510 mice showed reduced expression of Kv7.3, Kv7.5, and Kv2.1. Co-expression of KCNE5 with Kv7.4 in HEK293 cells produced larger currents at voltages >0 mV and increased the deactivation time for the Kv7.4 channel. Thus, our results demonstrate that Kv7 channel function is attenuated in the cerebral arteries of Tg4510 mice, which may result from decreased KCNE5 expression. Reduced Kv7 channel function might contribute to cerebral hypoperfusion in tauopathies, such as Alzheimer's disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: