Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations.

  • Sarah Bianchi‎ et al.
  • Scientific reports‎
  • 2016‎

Tight regulation of kinesin activity is crucial and malfunction is linked to neurological diseases. Point mutations in the KIF21A gene cause congenital fibrosis of the extraocular muscles type 1 (CFEOM1) by disrupting the autoinhibitory interaction between the motor domain and a regulatory region in the stalk. However, the molecular mechanism underlying the misregulation of KIF21A activity in CFEOM1 is not understood. Here, we show that the KIF21A regulatory domain containing all disease-associated substitutions in the stalk forms an intramolecular antiparallel coiled coil that inhibits the kinesin. CFEOM1 mutations lead to KIF21A hyperactivation by affecting either the structural integrity of the antiparallel coiled coil or the autoinhibitory binding interface, thereby reducing its affinity for the motor domain. Interaction of the KIF21A regulatory domain with the KIF21B motor domain and sequence similarities to KIF7 and KIF27 strongly suggest a conservation of this regulatory mechanism in other kinesin-4 family members.


MicroRNA‑301a/ZNRF3/wnt/β‑catenin signal regulatory crosstalk mediates glioma progression.

  • Jikui Sun‎ et al.
  • International journal of oncology‎
  • 2021‎

MicroRNA (miR)‑mediated mRNA and multiple signaling pathway dysregulations have been extensively implicated in several cancer types, including gliomas. Although previous studies have reported that miR‑301a acts as an oncogene, the underlying mechanisms of miR‑301a in the initiation and progression of glioma remain unknown. The present study aimed to investigate the involvement of miR‑301a‑mediated signaling pathway dysregulation in glioma. The results identified that miR‑301a was significantly upregulated in gliomas and was associated with a poor prognosis based on The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Moreover, zinc and ring finger 3 (ZNRF3) exerted a critical role in the miR‑301a‑mediated effects on the malignant phenotype, such as by affecting proliferation and apoptosis. Mechanistically, the TOP/FOP luciferase assay, western blotting and immunofluorescence results demonstrated that miR‑301a knockdown inhibited the wnt/β‑catenin signaling pathway, at least partially via ZNRF3, while ZNRF3 was a direct functional target of miR‑301a, as indicated by luciferase reporter assay and western blot analysis. Furthermore, ZNRF3 could in turn repress miR‑301a expression, which was dependent on the wnt pathway. Collectively, the present study identified a novel miR‑301a/ZNRF3/wnt/β‑catenin signaling feedback loop that serves critical roles in glioma tumorigenesis, and that may represent a potential therapeutic target.


Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules.

  • Ruddi Rodríguez-García‎ et al.
  • Current biology : CB‎
  • 2020‎

Microtubule-dependent organization of membranous organelles occurs through motor-based pulling and by coupling microtubule dynamics to membrane remodeling. For example, tubules of endoplasmic reticulum (ER) can be extended by kinesin- and dynein-mediated transport and through the association with the tips of dynamic microtubules. The binding between ER and growing microtubule plus ends requires End Binding (EB) proteins and the transmembrane protein STIM1, which form a tip-attachment complex (TAC), but it is unknown whether these proteins are sufficient for membrane remodeling. Furthermore, EBs and their partners undergo rapid turnover at microtubule ends, and it is unclear how highly transient protein-protein interactions can induce load-bearing processive motion. Here, we reconstituted membrane tubulation in a minimal system with giant unilamellar vesicles, dynamic microtubules, an EB protein, and a membrane-bound protein that can interact with EBs and microtubules. We showed that these components are sufficient to drive membrane remodeling by three mechanisms: membrane tubulation induced by growing microtubule ends, motor-independent membrane sliding along microtubule shafts, and membrane pulling by shrinking microtubules. Experiments and modeling demonstrated that the first two mechanisms can be explained by adhesion-driven biased membrane spreading on microtubules. Optical trapping revealed that growing and shrinking microtubule ends can exert forces of ∼0.5 and ∼5 pN, respectively, through attached proteins. Rapidly exchanging molecules that connect membranes to dynamic microtubules can thus bear a sufficient load to induce membrane deformation and motility. Furthermore, combining TAC components and a membrane-attached kinesin in the same in vitro assays demonstrated that they can cooperate in promoting membrane tubule extension.


MKLP2 Is a Motile Kinesin that Transports the Chromosomal Passenger Complex during Anaphase.

  • Ingrid E Adriaans‎ et al.
  • Current biology : CB‎
  • 2020‎

During cytokinesis, signals from the anaphase spindle direct the formation and position of a contractile ring at the cell cortex [1]. The chromosomal passenger complex (CPC) participates in cytokinesis initiation by signaling from the spindle midzone and equatorial cortex [2], but the mechanisms underlying the anaphase-specific CPC localization are currently unresolved. Accumulation of the CPC at these sites requires the presence of microtubules and the mitotic kinesin-like protein 2, MKLP2 (KIF20A), a member of the kinesin-6 family [2-7], and this has led to the hypothesis that the CPC is transported along microtubules by MKLP2 [3-5, 7]. However, the structure of the MKLP2 motor domain with its extended neck-linker region suggests that this kinesin might not be able to drive processive transport [8, 9]. Furthermore, experiments in Xenopus egg extracts indicated that the CPC might be transported by kinesin-4, KIF4A [10]. Finally, CPC-MKLP2 complexes might be directly recruited to the equatorial cortex via association with actin and myosin II, independent of kinesin activity [4, 8]. Using microscopy-based assays with purified proteins, we demonstrate that MKLP2 is a processive plus-end directed motor that can transport the CPC along microtubules in vitro. In cells, strong suppression of MKLP2-dependent CPC motility by expression of an MKLP2 P-loop mutant perturbs CPC accumulation at both the spindle midzone and equatorial cortex, whereas a weaker inhibition of MKLP2 motor using Paprotrain mainly affects CPC localization to the equatorial cortex. Our data indicate that control of cytokinesis initiation by the CPC requires its directional MKLP2-dependent transport.


CSPP1 stabilizes growing microtubule ends and damaged lattices from the luminal side.

  • Cyntha M van den Berg‎ et al.
  • The Journal of cell biology‎
  • 2023‎

Microtubules are dynamic cytoskeletal polymers, and their organization and stability are tightly regulated by numerous cellular factors. While regulatory proteins controlling the formation of interphase microtubule arrays and mitotic spindles have been extensively studied, the biochemical mechanisms responsible for generating stable microtubule cores of centrioles and cilia are poorly understood. Here, we used in vitro reconstitution assays to investigate microtubule-stabilizing properties of CSPP1, a centrosome and cilia-associated protein mutated in the neurodevelopmental ciliopathy Joubert syndrome. We found that CSPP1 preferentially binds to polymerizing microtubule ends that grow slowly or undergo growth perturbations and, in this way, resembles microtubule-stabilizing compounds such as taxanes. Fluorescence microscopy and cryo-electron tomography showed that CSPP1 is deposited in the microtubule lumen and inhibits microtubule growth and shortening through two separate domains. CSPP1 also specifically recognizes and stabilizes damaged microtubule lattices. These data help to explain how CSPP1 regulates the elongation and stability of ciliary axonemes and other microtubule-based structures.


BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures.

  • Daniël Splinter‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

Cytoplasmic dynein is the major microtubule minus-end-directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein-dynactin interaction are poorly understood. In this study, we focus on dynein-dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N-dynein-dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end-directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.


CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta.

  • Gideon Lansbergen‎ et al.
  • Developmental cell‎
  • 2006‎

CLASPs are mammalian microtubule-stabilizing proteins that can mediate the interaction between distal microtubule ends and the cell cortex. Using mass spectrometry-based assays, we have identified two CLASP partners, LL5beta and ELKS. LL5beta and ELKS form a complex that colocalizes with CLASPs at the cortex of HeLa cells as well as at the leading edge of motile fibroblasts. LL5beta is required for cortical CLASP accumulation and microtubule stabilization in HeLa cells, while ELKS plays an accessory role in these processes. LL5beta is a phosphatidylinositol-3,4,5-triphosphate (PIP3) binding protein, and its recruitment to the cell cortex is influenced by PI3 kinase activity but does not require intact microtubules. Cortical clusters of LL5beta and ELKS do not overlap with focal adhesions but often form in their vicinity and can affect their size. We propose that LL5beta and ELKS can form a PIP3-regulated cortical platform to which CLASPs attach distal microtubule ends.


MAP7 family proteins regulate kinesin-1 recruitment and activation.

  • Peter Jan Hooikaas‎ et al.
  • The Journal of cell biology‎
  • 2019‎

Kinesin-1 is responsible for microtubule-based transport of numerous cellular cargoes. Here, we explored the regulation of kinesin-1 by MAP7 proteins. We found that all four mammalian MAP7 family members bind to kinesin-1. In HeLa cells, MAP7, MAP7D1, and MAP7D3 act redundantly to enable kinesin-1-dependent transport and microtubule recruitment of the truncated kinesin-1 KIF5B-560, which contains the stalk but not the cargo-binding and autoregulatory regions. In vitro, purified MAP7 and MAP7D3 increase microtubule landing rate and processivity of kinesin-1 through transient association with the motor. MAP7 proteins promote binding of kinesin-1 to microtubules both directly, through the N-terminal microtubule-binding domain and unstructured linker region, and indirectly, through an allosteric effect exerted by the kinesin-binding C-terminal domain. Compared with MAP7, MAP7D3 has a higher affinity for kinesin-1 and a lower affinity for microtubules and, unlike MAP7, can be cotransported with the motor. We propose that MAP7 proteins are microtubule-tethered kinesin-1 activators, with which the motor transiently interacts as it moves along microtubules.


Diagnostic performance of artificial intelligence to detect genetic diseases with facial phenotypes: A protocol for systematic review and meta analysis.

  • Bosheng Qin‎ et al.
  • Medicine‎
  • 2020‎

Many genetic diseases are known to have distinctive facial phenotypes, which are highly informative to provide an opportunity for automated detection. However, the diagnostic performance of artificial intelligence to identify genetic diseases with facial phenotypes requires further investigation. The objectives of this systematic review and meta-analysis are to evaluate the diagnostic accuracy of artificial intelligence to identify the genetic diseases with face phenotypes and then find the best algorithm.


EB1 and EB3 regulate microtubule minus end organization and Golgi morphology.

  • Chao Yang‎ et al.
  • The Journal of cell biology‎
  • 2017‎

End-binding proteins (EBs) are the core components of microtubule plus end tracking protein complexes, but it is currently unknown whether they are essential for mammalian microtubule organization. Here, by using CRISPR/Cas9-mediated knockout technology, we generated stable cell lines lacking EB2 and EB3 and the C-terminal partner-binding half of EB1. These cell lines show only mild defects in cell division and microtubule polymerization. However, the length of CAMSAP2-decorated stretches at noncentrosomal microtubule minus ends in these cells is reduced, microtubules are detached from Golgi membranes, and the Golgi complex is more compact. Coorganization of microtubules and Golgi membranes depends on the EB1/EB3-myomegalin complex, which acts as membrane-microtubule tether and counteracts tight clustering of individual Golgi stacks. Disruption of EB1 and EB3 also perturbs cell migration, polarity, and the distribution of focal adhesions. EB1 and EB3 thus affect multiple interphase processes and have a major impact on microtubule minus end organization.


Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules.

  • Maud Martin‎ et al.
  • eLife‎
  • 2018‎

Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion.


Self-assembly of pericentriolar material in interphase cells lacking centrioles.

  • Fangrui Chen‎ et al.
  • eLife‎
  • 2022‎

The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152, or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.


Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition.

  • Kai Jiang‎ et al.
  • Developmental cell‎
  • 2014‎

Microtubules are cytoskeletal polymers with two structurally and functionally distinct ends, the plus- and the minus-end. Here, we focus on the mechanisms underlying the regulation of microtubule minus-ends by the CAMSAP/Nezha/Patronin protein family. We show that CAMSAP2 is required for the proper organization and stabilization of interphase microtubules and directional cell migration. By combining live-cell imaging and in vitro reconstitution of microtubule assembly from purified components with laser microsurgery, we demonstrate that CAMSAPs regulate microtubule minus-end growth and are specifically deposited on the lattice formed by microtubule minus-end polymerization. This process leads to the formation of CAMSAP-decorated microtubule stretches, which are stabilized from both ends and serve as sites of noncentrosomal microtubule outgrowth. The length of the stretches is regulated by the microtubule-severing protein katanin, which interacts with CAMSAPs. Our data thus indicate that microtubule minus-end assembly drives the stabilization of noncentrosomal microtubules and that katanin regulates this process.


Quantitative Analysis of Postural Instability in Patients with Parkinson's Disease.

  • Yang Yu‎ et al.
  • Parkinson's disease‎
  • 2021‎

Postural instability is commonly observed in Parkinson's disease, leading to an increasing risk of falling and worsening as the disease progresses. We found that limit of stability can be applied to reflect the dynamic evolution of postural instability in patients with Parkinson's disease.


Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends.

  • Andrea Serra-Marques‎ et al.
  • eLife‎
  • 2020‎

Intracellular transport relies on multiple kinesins, but it is poorly understood which kinesins are present on particular cargos, what their contributions are and whether they act simultaneously on the same cargo. Here, we show that Rab6-positive secretory vesicles are transported from the Golgi apparatus to the cell periphery by kinesin-1 KIF5B and kinesin-3 KIF13B, which determine the location of secretion events. KIF5B plays a dominant role, whereas KIF13B helps Rab6 vesicles to reach freshly polymerized microtubule ends, to which KIF5B binds poorly, likely because its cofactors, MAP7-family proteins, are slow in populating these ends. Sub-pixel localization demonstrated that during microtubule plus-end directed transport, both kinesins localize to the vesicle front and can be engaged on the same vesicle. When vesicles reverse direction, KIF13B relocates to the middle of the vesicle, while KIF5B shifts to the back, suggesting that KIF5B but not KIF13B undergoes a tug-of-war with a minus-end directed motor.


Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression.

  • Jingchao Wu‎ et al.
  • Current biology : CB‎
  • 2023‎

Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes.


Differential expression of liprin-α family proteins in the brain suggests functional diversification.

  • Samantha A Spangler‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

Liprin-α proteins are major protein constituents of synapses and are important for the organization of synaptic vesicles and neurotransmitter receptors on their respective sides of the synapse. Although it is becoming apparent that the single liprin-α gene in invertebrates is essential for synapse function, it is not known to what extent the four different liprin-α homologs (liprin-α1-4) in mammals are involved at synapses. We have designed specific antibodies against each of the four liprin-α proteins and investigated their regional and cellular distribution in the brain. Here we show that all four liprin-α proteins are present throughout the mature brain but have different regional distributions, which is highlighted by their differential localization in olfactory bulb, hippocampus, and cerebellar cortex. Double-immunofluorescence staining indicates that different liprin-α proteins are enriched in different synaptic populations but are also present at nonsynaptic sites. In particular, liprin-α2 is preferentially associated with hippocampal mossy fiber endings in the CA3, whereas synapses in the molecular layers of the CA1 and dentate gyrus double-labeled for liprin-α3. The localization of liprin-α2 and liprin-α3 with excitatory synapses was confirmed in cultured primary hippocampal neurons. Liprin-α4, which poorly co-distributed with presynaptic markers in hippocampus, instead strongly co-localized with VGLUT1 in the cerebellar molecular layer, suggesting its presence in parallel fiber-Purkinje cell synapses. Finally, staining of cultured glial cells indicated that liprin-α1 and liprin-α3 are also associated with astrocytes. We conclude that liprin-α family proteins might perform independent and specialized synaptic and nonsynaptic functions in different regions of the brain.


Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling.

  • Stephan Huveneers‎ et al.
  • The Journal of cell biology‎
  • 2012‎

To remodel endothelial cell-cell adhesion, inflammatory cytokine- and angiogenic growth factor-induced signals impinge on the vascular endothelial cadherin (VE-cadherin) complex, the central component of endothelial adherens junctions. This study demonstrates that junction remodeling takes place at a molecularly and phenotypically distinct subset of VE-cadherin adhesions, defined here as focal adherens junctions (FAJs). FAJs are attached to radial F-actin bundles and marked by the mechanosensory protein Vinculin. We show that endothelial hormones vascular endothelial growth factor, tumor necrosis factor α, and most prominently thrombin induced the transformation of stable junctions into FAJs. The actin cytoskeleton generated pulling forces specifically on FAJs, and inhibition of Rho-Rock-actomyosin contractility prevented the formation of FAJs and junction remodeling. FAJs formed normally in cells expressing a Vinculin binding-deficient mutant of α-catenin, showing that Vinculin recruitment is not required for adherens junction formation. Comparing Vinculin-devoid FAJs to wild-type FAJs revealed that Vinculin protects VE-cadherin junctions from opening during their force-dependent remodeling. These findings implicate Vinculin-dependent cadherin mechanosensing in endothelial processes such as leukocyte extravasation and angiogenesis.


Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry.

  • Daniël Splinter‎ et al.
  • PLoS biology‎
  • 2010‎

BICD2 is one of the two mammalian homologues of the Drosophila Bicaudal D, an evolutionarily conserved adaptor between microtubule motors and their cargo that was previously shown to link vesicles and mRNP complexes to the dynein motor. Here, we identified a G2-specific role for BICD2 in the relative positioning of the nucleus and centrosomes in dividing cells. By combining mass spectrometry, biochemical and cell biological approaches, we show that the nuclear pore complex (NPC) component RanBP2 directly binds to BICD2 and recruits it to NPCs specifically in G2 phase of the cell cycle. BICD2, in turn, recruits dynein-dynactin to NPCs and as such is needed to keep centrosomes closely tethered to the nucleus prior to mitotic entry. When dynein function is suppressed by RNA interference-mediated depletion or antibody microinjection, centrosomes and nuclei are actively pushed apart in late G2 and we show that this is due to the action of kinesin-1. Surprisingly, depletion of BICD2 inhibits both dynein and kinesin-1-dependent movements of the nucleus and cytoplasmic NPCs, demonstrating that BICD2 is needed not only for the dynein function at the nuclear pores but also for the antagonistic activity of kinesin-1. Our study demonstrates that the nucleus is subject to opposing activities of dynein and kinesin-1 motors and that BICD2 contributes to nuclear and centrosomal positioning prior to mitotic entry through regulation of both dynein and kinesin-1.


F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo.

  • Christian W H Berends‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα-GPR-LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα-GPR-LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: