Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 60 papers

The origin and evolution of ARGFX homeobox loci in mammalian radiation.

  • Guang Li‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

Many homeobox genes show remarkable conservation between divergent animal phyla. In contrast, the ARGFX (Arginine-fifty homeobox) homeobox locus was identified in the human genome but is not present in mouse or invertebrates. Here we ask when and how this locus originated and examine its pattern of molecular evolution.


Evolution of the Alx homeobox gene family: parallel retention and independent loss of the vertebrate Alx3 gene.

  • Imelda M McGonnell‎ et al.
  • Evolution & development‎
  • 2011‎

The Alx gene family is implicated in craniofacial development and comprises two to four homeobox genes in each vertebrate genome analyzed. Using phylogenetics and comparative genomics, we show that the common ancestor of jawed vertebrates had three Alx genes descendent from the two-round genome duplications (Alx1, Alx3, Alx4), compared with a single amphioxus gene. Later in evolution one of the paralogues, Alx3, was lost independently from at least three different vertebrate lineages, whereas Alx1 and Alx4 were consistently retained. Comparison of spatial gene expression patterns reveals that the three mouse genes have equivalent craniofacial expression to the two chick and frog genes, suggesting that redundancy compensated for gene loss. We suggest that multiple independent loss of one Alx gene was predisposed by extensive and persistent overlap in gene expression between Alx paralogues. Even so, it is unclear whether it was coincidence or evolutionary bias that resulted in the same Alx gene being lost on each occasion, rather than different members of the gene family.


Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation.

  • Laura Ferguson‎ et al.
  • PLoS genetics‎
  • 2014‎

Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.


Genomic organisation of the seven ParaHox genes of coelacanths.

  • John F Mulley‎ et al.
  • Journal of experimental zoology. Part B, Molecular and developmental evolution‎
  • 2014‎

Human and mouse genomes contain six ParaHox genes implicated in gut and neural patterning. In coelacanths and cartilaginous fish, an additional ParaHox gene exists-Pdx2-that dates back to the genome duplications in early vertebrate evolution. Here we examine the genomic arrangement and flanking genes of all ParaHox genes in coelacanths, to determine the full complement of these genes. We find that coelacanths have seven ParaHox genes in total, in four chromosomal locations, revealing that five gene losses occurred soon after vertebrate genome duplication. Comparison of intergenic sequences reveals that some Pdx1 regulatory regions associated with development of pancreatic islets are older than tetrapods, that Pdx1 and Pdx2 share few if any conserved non-coding elements, and that there is very high sequence conservation between coelacanth species.


Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.

  • Roberto Feuda‎ et al.
  • Genome biology and evolution‎
  • 2016‎

Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically.


A sister of NANOG regulates genes expressed in pre-implantation human development.

  • Thomas L Dunwell‎ et al.
  • Open biology‎
  • 2017‎

The NANOG homeobox gene plays a pivotal role in self-renewal and maintenance of pluripotency in human, mouse and other vertebrate embryonic stem cells, and in pluripotent cells of the blastocyst inner cell mass. There is a poorly studied and atypical homeobox locus close to the Nanog gene in some mammals which could conceivably be a cryptic paralogue of NANOG, even though the loci share only 20% homeodomain identity. Here we argue that this gene, NANOGNB (NANOG Neighbour), is an extremely divergent duplicate of NANOG that underwent radical sequence change in the mammalian lineage. Like NANOG, the NANOGNB gene is expressed in pre-implantation embryos of human and cow; unlike NANOG, NANOGNB expression is restricted to 8-cell and morula stages, preceding blastocyst formation. When expressed ectopically in adult cells, human NANOGNB elicits gene expression changes, including downregulation of a set of genes that have an expression pulse at the 8-cell stage of pre-implantation development. We conclude that gene duplication and massive sequence divergence in mammals generated a novel homeobox gene that acquired new developmental roles complementary to those of Nanog.


Mutation of amphioxus Pdx and Cdx demonstrates conserved roles for ParaHox genes in gut, anus and tail patterning.

  • Yanhong Zhong‎ et al.
  • BMC biology‎
  • 2020‎

The homeobox genes Pdx and Cdx are widespread across the animal kingdom and part of the small ParaHox gene cluster. Gene expression patterns suggest ancient roles for Pdx and Cdx in patterning the through-gut of bilaterian animals although functional data are available for few lineages. To examine evolutionary conservation of Pdx and Cdx gene functions, we focus on amphioxus, small marine animals that occupy a pivotal position in chordate evolution and in which ParaHox gene clustering was first reported.


PRD-Class Homeobox Genes in Bovine Early Embryos: Function, Evolution, and Overlapping Roles.

  • Thomas D Lewin‎ et al.
  • Molecular biology and evolution‎
  • 2022‎

Eutherian Totipotent Cell Homeobox (ETCHbox) genes are mammalian-specific PRD-class homeobox genes with conserved expression in the preimplantation embryo but fast-evolving and highly divergent sequences. Here, we exploit an ectopic expression approach to examine the role of bovine ETCHbox genes and show that ARGFX and LEUTX homeodomain proteins upregulate genes normally expressed in the blastocyst; the identities of the regulated genes suggest that, in vivo, the ETCHbox genes play a role in coordinating the physical formation of the blastocyst structure. Both genes also downregulate genes expressed earlier during development and genes associated with an undifferentiated cell state, possibly via the JAK/STAT pathway. We find evidence that bovine ARGFX and LEUTX have overlapping functions, in contrast to their antagonistic roles in humans. Finally, we characterize a mutant bovine ARGFX allele which eliminates the homeodomain and show that homozygous mutants are viable. These data support the hypothesis of functional overlap between ETCHbox genes within a species, roles for ETCHbox genes in blastocyst formation and the change of their functions over evolutionary time.


Rapid Evolution of the Embryonically Expressed Homeobox Gene LEUTX within Primates.

  • Thomas D Lewin‎ et al.
  • Genome biology and evolution‎
  • 2023‎

LEUTX is a homeodomain transcription factor expressed in the very early embryo with a function around embryonic genome activation. The LEUTX gene is found only in eutherian mammals including humans but, unlike the majority of homeobox genes, the encoded amino acid sequence is very different between divergent mammalian species. However, whether dynamic evolution has also occurred between closely related mammalian species remains unclear. In this work, we perform a comparative genomics study of LEUTX within the primates, revealing dramatic evolutionary sequence change between closely related species. Positive selection has acted on sites in the LEUTX protein, including six sites within the homeodomain; this suggests that selection has driven changes in the set of downstream targets. Transfection into cell culture followed by transcriptomic analysis reveals small functional differences between human and marmoset LEUTX, suggesting rapid sequence evolution has fine-tuned the role of this homeodomain protein within the primates.


The genome sequence of the Mother Shipton moth , Euclidia mi (Clerck, 1759).

  • Douglas Boyes‎ et al.
  • Wellcome open research‎
  • 2023‎

We present a genome assembly from an individual male Euclidia mi (the Mother Shipton moth; Arthropoda; Insecta; Lepidoptera; Erebidae). The genome sequence is 2,320 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the assembled Z sex chromosome. The mitochondrial genome has also been assembled and is 15.6 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,454 protein coding genes.


The genome sequence of the Feathered Gothic, Tholera decimalis (Poda, 1761).

  • Douglas Boyes‎ et al.
  • Wellcome open research‎
  • 2023‎

We present a genome assembly from an individual female Tholera decimalis (the Feathered Gothic; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 1,334.1 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.4 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,771 protein coding genes.


The genome sequence of the Light Brocade, Lacanobia w-latinum (Hufnagel, 1766).

  • Douglas Boyes‎ et al.
  • Wellcome open research‎
  • 2023‎

We present a genome assembly from an individual male Lacanobia w-latinum (the Light Brocade; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 903.9 megabases in span. Most of the assembly is scaffolded into 31 chromosomal, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.38 kilobases in length. Gene annotation of this assembly on Ensembl identified 21,592 protein coding genes.


Reinforcing the egg-timer: recruitment of novel lophotrochozoa homeobox genes to early and late development in the pacific oyster.

  • Jordi Paps‎ et al.
  • Genome biology and evolution‎
  • 2015‎

The metazoan superclade Lophotrochozoa includes mollusks, annelids, and several other animal phyla. It is reasonable to assume that this organismal diversity may be traced, in part, to changes in developmentally important genes, such as the homeobox genes. Although most comparative studies have focussed on ancient homeobox gene families conserved across bilaterians, there are also "novel" homeobox genes that have arisen more recently in evolution, presumably by duplication followed by radical divergence and functional change. We classify 136 homeobox genes in the genome sequence of the Pacific oyster, Crassostrea gigas. The genome shows an unusually low degree of homeobox gene clustering, with disruption of the NK, Hox, and ParaHox gene clusters. Among the oyster genes, 31 do not fall into ancient metazoan or bilaterian homeobox gene families; we deduce that they originated in the lophotrochozoan clade. We compared eight lophotrochozoan genomes to trace the pattern of homeobox gene evolution across this clade, allowing us to define 19 new lophotrochozoan-specific clades within the ANTP, PRD, TALE, ZF, SIX, and CUT classes. Using transcriptome data, we compared temporal expression of each homeobox gene in oyster development, and discovered that the lophotrochozoan-specific homeobox genes have peak expression either in early development (egg to gastrula) or in late development (after the trochophore larval stage), but rarely in between. This finding is consistent with the egg-timer, hourglass or phylotypic stage model of developmental evolution, in which there is a conserved central phase of development, but more evolutionarily labile early and late phases.


A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths.

  • Shan Quah‎ et al.
  • Molecular biology and evolution‎
  • 2015‎

MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia.


A Diversity of Conserved and Novel Ovarian MicroRNAs in the Speckled Wood (Pararge aegeria).

  • Shan Quah‎ et al.
  • PloS one‎
  • 2015‎

microRNAs (miRNAs) are important regulators of animal development and other processes, and impart robustness to living systems through post-transcriptional regulation of specific mRNA transcripts. It is postulated that newly emergent miRNAs are generally expressed at low levels and with spatiotemporally restricted expression domains, thus minimising effects of spurious targeting on animal transcriptomes. Here we present ovarian miRNA transcriptome data for two geographically distinct populations of the Speckled Wood butterfly (Pararge aegeria). A total of 74 miRNAs were identified, including 11 newly discovered and evolutionarily-young miRNAs, bringing the total of miRNA genes known from P. aegeria up to 150. We find a positive correlation between miRNA age and expression level. A common set of 55 miRNAs are expressed in both populations. From this set, we identify seven that are consistently either ovary-specific or highly upregulated in ovaries relative to other tissues. This 'ovary set' includes miRNAs with known contributions to ovarian function in other insect species with similar ovaries and mode of oogenesis, including miR-989 and miR-2763, plus new candidates for ovarian function. We also note that conserved miRNAs are overrepresented in the ovary relative to the whole body.


The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

  • Ingo Braasch‎ et al.
  • Nature genetics‎
  • 2016‎

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.


The dynamics of vertebrate homeobox gene evolution: gain and loss of genes in mouse and human lineages.

  • Ying-fu Zhong‎ et al.
  • BMC evolutionary biology‎
  • 2011‎

Homeobox genes are a large and diverse group of genes, many of which play important roles in transcriptional regulation during embryonic development. Comparison of homeobox genes between species may provide insights into the evolution of developmental mechanisms.


Noggin and noggin-like genes control dorsoventral axis regeneration in planarians.

  • M Dolores Molina‎ et al.
  • Current biology : CB‎
  • 2011‎

Planarians regenerate a whole animal from a small body piece within a few days. Recent studies have shown that the bone morphogenetic protein (BMP) pathway is required to reestablish the dorsoventral (DV) axis. In vertebrates, the specification of the DV axis depends on the coordinated action of a dual organizer defined by BMP and antidorsalizing morphogenetic protein (ADMP) under the control of several factors, including the inhibitors chordin and noggin. Planarians have an expanded noggin family (up to ten members), which have been classified as canonical noggin (nog) and noggin-like (nlg) genes, the latter carrying an insertion within the noggin domain. Here we show that a BMP/ADMP organizer governs DV axis reestablishment during planarian regeneration, highlighting a greater-than-thought conservation of the mechanisms that establish this axis in protostomes and deuterostomes. Also, we report that whereas noggin genes function as canonical BMP inhibitors, the silencing of planarian nlg8 induces ectopic neurogenesis and enhances ventralizing bmp(RNAi) phenotypes. Finally, we show that noggin-like genes are conserved from cnidarian to vertebrates and that both planarian nlg8 and Xenopus nlg ventralize Xenopus embryos when overexpressed. Remarkably, this ventralization is not associated with an increase in SMAD1/5/8 phosphorylation.


Parallel retention of Pdx2 genes in cartilaginous fish and coelacanths.

  • John F Mulley‎ et al.
  • Molecular biology and evolution‎
  • 2010‎

The Pdx1 or Ipf1 gene encodes an important homeodomain-containing protein with key roles in pancreas development and function. Mutations in human PDX1 are implicated in developmental defects and disease of the pancreas. Extensive research, including genome sequencing, has indicated that Pdx1 is the only member of its gene family in mammals, birds, amphibians, and ray-finned fish, and with the exception of teleost fish, this gene forms part of the ParaHox gene cluster along with Gsx1 and Cdx2. The ParaHox cluster, however, is a remnant of a 4-fold genome duplication; the three other ParaHox paralogues lack a Pdx-like gene in all vertebrate genomes examined to date. We have used bacterial artificial chromosome cloning and synteny analysis to show that the ancestor of living jawed vertebrates in fact had more ParaHox genes, including two Pdx genes (Pdx1 and Pdx2). Surprisingly, the two Pdx genes have been retained in parallel in two quite distantly related lineages, the cartilaginous fish (sharks, skates, and chimeras) and the Indonesian coelacanth, Latimeria menadoensis. The Pdx2 gene has been lost independently in ray-finned fish and in tetrapods.


HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology.

  • Ying-Fu Zhong‎ et al.
  • Evolution & development‎
  • 2011‎

Homeobox gene database (HomeoDB), a manually curated database of homeobox genes and their classification, has been well received since its release in 2008. Here, we report HomeoDB2, an expansion and improvement of the original database that provides greater functionality for the user. HomeoDB2 includes all homeobox loci from 10 animal genomes (human, mouse, chicken, frog, zebrafish, amphioxus, nematode, fruitfly, beetle, honeybee) plus tools for downloading sequences, comparing between species and BLAST searching. HomeoDB2 provides a resource for studying the dynamics of homeobox gene evolution, and is freely accessible at http://homeodb.zoo.ox.ac.uk.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: