Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

A central role for anterior cingulate cortex in the control of pathological aggression.

  • Sabrina van Heukelum‎ et al.
  • Current biology : CB‎
  • 2021‎

Controlling aggression is a crucial skill in social species like rodents and humans and has been associated with anterior cingulate cortex (ACC). Here, we directly link the failed regulation of aggression in BALB/cJ mice to ACC hypofunction. We first show that ACC in BALB/cJ mice is structurally degraded: neuron density is decreased, with pervasive neuron death and reactive astroglia. Gene-set enrichment analysis suggested that this process is driven by neuronal degeneration, which then triggers toxic astrogliosis. cFos expression across ACC indicated functional consequences: during aggressive encounters, ACC was engaged in control mice, but not BALB/cJ mice. Chemogenetically activating ACC during aggressive encounters drastically suppressed pathological aggression but left species-typical aggression intact. The network effects of our chemogenetic perturbation suggest that this behavioral rescue is mediated by suppression of amygdala and hypothalamus and activation of mediodorsal thalamus. Together, these findings highlight the central role of ACC in curbing pathological aggression.


Shared genetic etiology between ADHD, task-related behavioral measures and brain activation during response inhibition in a youth ADHD case-control study.

  • Gülhan Saraçaydın‎ et al.
  • European archives of psychiatry and clinical neuroscience‎
  • 2024‎

Impaired response inhibition is commonly present in individuals with attention-deficit/hyperactivity disorder (ADHD) and their unaffected relatives, suggesting impaired response inhibition as a candidate endophenotype in ADHD. Therefore, we explored whether behavioral and neural correlates of response inhibition are related to polygenic risk scores for ADHD (PRS-ADHD). We obtained functional magnetic resonance imaging of neural activity and behavioral measures during a stop-signal task in the NeuroIMAGE cohort, where inattention and hyperactivity-impulsivity symptoms were assessed with the Conners Parent Rating Scales. Our sample consisted of 178 ADHD cases, 103 unaffected siblings, and 173 controls (total N = 454; 8-29 years), for whom genome-wide genotyping was available. PRS-ADHD was constructed using the PRSice-2 software. We found PRS-ADHD to be associated with ADHD symptom severity, a slower and more variable response to Go-stimuli, and altered brain activation during response inhibition in several regions of the bilateral fronto-striatal network. Mean reaction time and intra-individual reaction time variability mediated the association of PRS-ADHD with ADHD symptoms (total, inattention, hyperactivity-impulsivity), and activity in the left temporal pole and anterior parahippocampal gyrus during failed inhibition mediated the relationship of PRS-ADHD with hyperactivity-impulsivity. Our findings indicate that PRS-ADHD are related to ADHD severity on a spectrum of clinical, sub-threshold, and normal levels; more importantly, we show a shared genetic etiology of ADHD and behavioral and neural correlates of response inhibition. Given the modest sample size of our study, future studies with higher power are warranted to explore mediation effects, suggesting that genetic liability to ADHD may adversely affect attention regulation on the behavioral level and point to a possible response inhibition-related mechanistic pathway from PRS-ADHD to hyperactivity-impulsivity.


Interplay between genome-wide implicated genetic variants and environmental factors related to childhood antisocial behavior in the UK ALSPAC cohort.

  • I Hyun Ruisch‎ et al.
  • European archives of psychiatry and clinical neuroscience‎
  • 2019‎

We investigated gene-environment (G × E) interactions related to childhood antisocial behavior between polymorphisms implicated by recent genome-wide association studies (GWASs) and two key environmental adversities (maltreatment and smoking during pregnancy) in a large population cohort (ALSPAC). We also studied the MAOA candidate gene and addressed comorbid attention-deficit/hyperactivity disorder (ADHD). ALSPAC is a large, prospective, ethnically homogeneous British cohort. Our outcome consisted of mother-rated conduct disorder symptom scores at age 7;9 years. G × E interactions were tested in a sex-stratified way (α = 0.0031) for four GWAS-implicated variants (for males, rs4714329 and rs9471290; for females, rs2764450 and rs11215217), and a length polymorphism near the MAOA-promoter region. We found that males with rs4714329-GG (P = 0.0015) and rs9471290-AA (P = 0.0001) genotypes were significantly more susceptible to effects of smoking during pregnancy in relation to childhood antisocial behavior. Females with the rs11215217-TC genotype (P = 0.0018) were significantly less susceptible to effects of maltreatment, whereas females with the MAOA-HL genotype (P = 0.0002) were more susceptible to maltreatment effects related to antisocial behavior. After adjustment for comorbid ADHD symptomatology, aforementioned G × E's remained significant, except for rs11215217 × maltreatment, which retained only nominal significance. Genetic variants implicated by recent GWASs of antisocial behavior moderated associations of smoking during pregnancy and maltreatment with childhood antisocial behavior in the general population. While we also found a G × E interaction between the candidate gene MAOA and maltreatment, we were mostly unable to replicate the previous results regarding MAOA-G × E's. Future studies should, in addition to genome-wide implicated variants, consider polygenic and/or multimarker analyses and take into account potential sex stratification.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: