Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 130 papers

Non-Invasive Monitoring of Temporal and Spatial Blood Flow during Bone Graft Healing Using Diffuse Correlation Spectroscopy.

  • Songfeng Han‎ et al.
  • PloS one‎
  • 2015‎

Vascular infiltration and associated alterations in microvascular blood flow are critical for complete bone graft healing. Therefore, real-time, longitudinal measurement of blood flow has the potential to successfully predict graft healing outcomes. Herein, we non-invasively measure longitudinal blood flow changes in bone autografts and allografts using diffuse correlation spectroscopy in a murine femoral segmental defect model. Blood flow was measured at several positions proximal and distal to the graft site before implantation and every week post-implantation for a total of 9 weeks (autograft n = 7 and allograft n = 10). Measurements of the ipsilateral leg with the graft were compared with those of the intact contralateral control leg. Both autografts and allografts exhibited an initial increase in blood flow followed by a gradual return to baseline levels. Blood flow elevation lasted up to 2 weeks in autografts, but this duration varied from 2 to 6 weeks in allografts depending on the spatial location of the measurement. Intact contralateral control leg blood flow remained at baseline levels throughout the 9 weeks in the autograft group; however, in the allograft group, blood flow followed a similar trend to the graft leg. Blood flow difference between the graft and contralateral legs (ΔrBF), a parameter defined to estimate graft-specific changes, was elevated at 1-2 weeks for the autograft group, and at 2-4 weeks for the allograft group at the proximal and the central locations. However, distal to the graft, the allograft group exhibited significantly greater ΔrBF than the autograft group at 3 weeks post-surgery (p < 0.05). These spatial and temporal differences in blood flow supports established trends of delayed healing in allografts versus autografts.


Proangiogenic cells enhanced persistent and physiologic neovascularization compared with macrophages.

  • Young-Eun Choi‎ et al.
  • Experimental & molecular medicine‎
  • 2015‎

Proangiogenic cells (PACs) display surface markers and secrete angiogenic factors similar to those used by myelomonocytic cells, but, unlike myelomonocytic cells, PACs enhance neovascularization activity in experimental ischemic diseases. This study was performed to reveal the differential neovascularization activities of PACs compared with those of myelomonocytic cells. We cultured PACs and CD14(+)-derived macrophages (Macs) for 7 days. Most of the surface markers and cytokines in the two cell types were alike; the exceptions were KDR, β8 integrin, interleukin-8 and monocyte chemotactic protein-1. Unlike Macs, PACs significantly enhanced mesenchymal stem cell (MSC) transmigration. PACs and Macs increased neovascularization activity in an in vitro co-culture of human umbilical vein endothelial cells and MSCs and in an in vivo cotransplantation in Matrigel. However, the use of Macs resulted in inappropriately dilated and leaky vessels, whereas the use of PACs did not. We induced critical hindlimb ischemia in nude mice, and then transplanted PACs, Macs or vehicle into the mice. We obtained laser Doppler perfusion images weekly. At 2 weeks, mice treated with PACs showed significantly enhanced perfusion recovery in contrast to those treated with Macs. After day 7, when cells were depleted using a suicidal gene, viral thymidine kinase, to induce apoptosis of the cells in vivo by ganciclovir administration, we found that the improved perfusion was significantly abrogated in the PAC-treated group, whereas perfusion was not changed in the Mac-treated group. PACs caused an increase in healthy new vessels in in vitro and in vivo models of angiogenesis and enhanced long-term functional neovascularization activity in the hindlimb ischemia model, whereas Macs did not. Nevertheless, the angiogenic potential and long-term functional results for a specific cell type should be validated to confirm effectiveness and safety of the cell type for use in therapeutic angiogenesis procedures.


MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

  • Hisataka Ogawa‎ et al.
  • PloS one‎
  • 2015‎

Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.


T-cell senescence contributes to abnormal glucose homeostasis in humans and mice.

  • Hyon-Seung Yi‎ et al.
  • Cell death & disease‎
  • 2019‎

Chronic inflammation is a driving force for the development of metabolic disease including diabetes and obesity. However, the functional characteristics of T-cell senescence in the abnormal glucose homeostasis are not fully understood. We studied the patients visiting a hospital for routine health check-ups, who were divided into two groups: normal controls and people with prediabetes. Gene expression profiling of peripheral blood mononuclear cells from normal controls and patients with type 2 diabetes was undertaken using microarray analysis. We also investigated the immunometabolic characteristics of peripheral and hepatic senescent T cells in the normal subjects and patients with prediabetes. Moreover, murine senescent T cells were tested functionally in the liver of normal or mice with metabolic deterioration caused by diet-induced obesity. Human senescent (CD28-CD57+) CD8+ T cells are increased in the development of diabetes and proinflammatory cytokines and cytotoxic molecules are highly expressed in senescent T cells from patients with prediabetes. Moreover, we demonstrate that patients with prediabetes have higher concentrations of reactive oxygen species (ROS) in their senescent CD8+ T cells via enhancing capacity to use glycolysis. These functional properties of senescent CD8+ T cells contribute to the impairment of hepatic insulin sensitivity in humans. Furthermore, we found an increase of hepatic senescent T cells in mouse models of aging and diet-induced obesity. Adoptive transfer of senescent CD8+ T cells also led to a significant deterioration in systemic abnormal glucose homeostasis, which is improved by ROS scavengers in mice. This study defines a new clinically relevant concept of T-cell senescence-mediated inflammatory responses in the pathophysiology of abnormal glucose homeostasis. We also found that T-cell senescence is associated with systemic inflammation and alters hepatic glucose homeostasis. The rational modulation of T-cell senescence would be a promising avenue for the treatment or prevention of diabetes.


Genetic Analysis of CLCN7 in an Old Female Patient with Type II Autosomal Dominant Osteopetrosis.

  • Seon Young Kim‎ et al.
  • Endocrinology and metabolism (Seoul, Korea)‎
  • 2018‎

Type II autosomal dominant osteopetrosis (ADO II) is a rare genetically heterogeneous disorder characterized by osteosclerosis and increased bone mass, predominantly involving spine, pelvis, and skull. It is closely related to functional defect of osteoclasts caused by chloride voltage-gated channel 7 (CLCN7) gene mutations. In this study, we aimed to identify the pathogenic mutation in a Korean patient with ADO II using whole exome sequencing.


Treatment with Lobeglitazone Attenuates Hepatic Steatosis in Diet-Induced Obese Mice.

  • Sorim Choung‎ et al.
  • PPAR research‎
  • 2018‎

Nonalcoholic fatty liver disease (NAFLD) is strongly associated with insulin resistance. The peroxisome proliferator-activated receptor (PPAR) activators, thiazolidinediones, (TZDs), are insulin sensitizers used as a treatment for NAFLD. However, TZDs are a controversial treatment for NAFLD because of conflicting results regarding hepatic steatosis and fibrosis. To evaluate a possible effective drug for treatment of NAFLD, we investigated the effects of a newly developed TZD, lobeglitazone, with an emphasis on hepatic lipid metabolism. Lobeglitazone treatment for 4 weeks in high fat diet- (HFD-) induced obese mice (HL group) improved insulin resistance and glucose intolerance compared to HFD-induced obese mice (HU group). The gene levels related to hepatic gluconeogenesis also decreased after treatment by lobeglitazone. The livers of mice in the HL group showed histologically reduced lipid accumulation, with lowered total plasma cholesterol and triglyceride levels. In addition, the HL group significantly decreased the hepatic expression of genes associated with lipid synthesis, cholesterol biosynthesis, and lipid droplet development and increased the hepatic expression of genes associated with fatty acid β-oxidation, thus suggesting that lobeglitazone decreased hepatic steatosis and reversed hepatic lipid dysregulation. Livers with steatohepatitis contained increased levels of PPARγ and phosphorylated PPARγ at serine 273, leading to downregulation of expression of genes associated with insulin sensitivity. Notably, the treatment of lobeglitazone increased the protein levels of PPARα and diminished levels of PPARγ phosphorylated at serine 273, which were increased by a HFD, suggesting that induction of PPARα and posttranslational modification of PPARγ in livers by lobeglitazone might be an underlying mechanism of the improvement seen in NAFLD. Taken together, our data showed that lobeglitazone might be an effective treatment for NAFLD.


Factors influencing on health-related quality of life in South Korean with chronic liver disease.

  • Hyun Jin Kim‎ et al.
  • Health and quality of life outcomes‎
  • 2018‎

The objective of this study was to determine health-related quality of life (HRQoL) among chronic liver disease (CLD) subjects in South Korea using EuroQol five-dimension questionnaire (EQ-5D).


Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging.

  • Peng Mi‎ et al.
  • Biomaterials‎
  • 2013‎

Nanodevices for magnetic resonance imaging of cancer were self-assembled to core-shell micellar structures by metal complex formation of K(2)PtCl(6) with diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen (Gd-DTPA), a T(1)-contrast agent, and poly(ethylene glycol)-b-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) copolymer in aqueous solution. Gd-DTPA-loaded polymeric micelles (Gd-DTPA/m) showed a hydrodynamic diameter of 45 nm and a core size of 22 nm. Confining Gd-DTPA inside the core of the micelles increased the relaxivity of Gd-DTPA more than 13 times (48 mM(-1) s(-1)). In physiological conditions Gd-DTPA/m sustainedly released Gd-DTPA, while the Pt(IV) complexes remain bound to the polymer. Gd-DTPA/m extended the circulation time in plasma and augmented the tumor accumulation of Gd-DTPA leading to successful contrast enhancement of solid tumors. μ-Synchrotron radiation-X-ray fluorescence results confirmed that Gd-DTPA was delivered to the tumor site by the micelles. Our study provides a facile strategy for incorporating contrast agents, dyes and bioactive molecules into nanodevices for developing safe and efficient drug carriers for clinical application.


Genome-wide gene expression analysis in the placenta from fetus with trisomy 21.

  • Ji Hyae Lim‎ et al.
  • BMC genomics‎
  • 2017‎

We performed whole human genome expression analysis in placenta tissue (normal and T21) samples in order to investigate gene expression into the pathogenesis of trisomy 21 (T21) placenta. We profiled the whole human genome expression of placental samples from normal and T21 fetuses using the GeneChip Human Genome U133 plus 2.0 array. Based on these data, we predicted the functions of differentially expressed genes using bioinformatics tools.


Functional identification of protein phosphatase 1-binding consensus residues in NBCe1-B.

  • Kyu Pil Lee‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2018‎

Protein phosphatase 1 (PP1) is involved in various signal transduction mechanisms as an extensive regulator. The PP1 catalytic subunit (PP1c) recognizes and binds to PP1-binding consensus residues (FxxR/KxR/K) in NBCe1-B. Consequently, we focused on identifying the function of the PP1-binding consensus residue, 922FMDRLK927, in NBCe1-B. Using site-directed mutagenesis and co-immunoprecipitation assays, we revealed that in cases where the residues were substituted (F922A, R925A, and K927A) or deleted (deletion of amino acids 922-927), NBCe1-B mutants inhibited PP1 binding to NBCe1-B. Additionally, by recording the intracellular pH, we found that PP1-binding consensus residues in NBCe1-B were not only critical for NBCe1-B activity, but also relevant to its surface expression level. Therefore, we reported that NBCe1-B, as a substrate of PP1, contains these residues in the C-terminal region and that the direct interaction between NBCe1-B and PP1 is functionally critical in controlling the regulation of the HCO3- transport. These results suggested that like IRBIT, PP1 was another novel regulator of HCO3- secretion in several types of epithelia.


Reduced oxidative capacity in macrophages results in systemic insulin resistance.

  • Saet-Byel Jung‎ et al.
  • Nature communications‎
  • 2018‎

Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages.


Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer.

  • Hiroaki Taniguchi‎ et al.
  • Oncotarget‎
  • 2017‎

PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells.


Combination of Red Clover and Hops Extract Improved Menopause Symptoms in an Ovariectomized Rat Model.

  • Mi Ran Kim‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2020‎

Red clover and hops are already known for their alternative menopausal therapies; however, their combination has not yet been studied. This study aimed to evaluate the efficacy of the combination of red clover and hops extract (RHEC) for treating menopausal symptoms for the first time. A high-performance liquid chromatography (HPLC) method for RHEC was developed and validated for the analysis of biochanin A in red clover extract and xanthohumol in hops extract. An in vivo study was conducted using an ovariectomized rat model treated with RHEC (125, 250, and 500 mg/kg, p.o.) for a 12-week test period. Changes in body weight, tail skin temperature (TST), serum lipid profile, bone metabolism, antioxidants, and markers of vasorelaxation and uterus endometrium were evaluated. RHEC significantly inhibited body weight gain and decreased fat weight. Changes in TST associated with flashes were significantly inhibited in the RHEC groups. Other markers related to menopausal symptoms, such as blood lipid profile (total cholesterol and low-density-lipoprotein cholesterol), bone metabolism (serum alkaline phosphatase, osteocalcin, and c-terminal telopeptide type 1), antioxidants (superoxide dismutase and malondialdehyde), and vasorelaxants (endothelin-1 and nitric oxide), were significantly improved after the administration of RHEC. We also confirmed the safety of RHEC through histopathological observation of the endometrium. Our findings demonstrate that RHEC appears to have high potential for comprehensively improving various symptoms of menopause.


Alterations in intracellular Ca2+ levels in human endometrial stromal cells after decidualization.

  • Jie Ohn Sohn‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Calcium (Ca2+) is an important element for many physiological functions of the uterus, including embryo implantation. Here, we investigated the possible involvement of altered intracellular Ca2+ levels in decidualization in human endometrial stromal cells (hEMSCs). hEMSCs showed high levels of mesenchymal stem cell marker expression (CD73, CD90, and CD105) and did not express markers of hematopoietic progenitor cells (CD31, CD34, CD45, and HLA-DR). Decidualization is a process of ovarian steroid-induced endometrial stromal cell proliferation and differentiation. Several types of ion channels, which are regulated by the ovarian hormones progesterone and estradiol, as well as growth factors, are important for endometrial receptivity and embryo implantation. The combined application of progesterone (1 μM medroxyprogesterone acetate) and cyclic AMP (0.5 mM) for 6 days not only elevated inositol 1,4,5-triphosphate receptor (IP3R)-mediated Ca2+ release and IP3R expression, it also promoted ORAI and STIM expression as well as cyclopiazonic acid-induced Ca2+ release. Finally, intracellular Ca2+ levels and ion channel gene expression influenced hEMSC proliferation. These results suggest that cytosolic Ca2+ dynamics, mediated by specific ion channels, serve as an important step in the decidualization of hEMSCs.


Anti-inflammatory and anti-nociceptive activities of Alpinia Oxyphylla Miquel extracts in animal models.

  • Su Hyun Yu‎ et al.
  • Journal of ethnopharmacology‎
  • 2020‎

Alpinia Oxyphylla Miquel is a widely used traditional herbal medicine for the treatment of abdominal pain, intestinal disorders, enuresis, and inflammatory conditions.


Structural tuning of oligonucleotides for enhanced blood circulation properties of unit polyion complexes prepared from two-branched poly(ethylene glycol)-block-poly(l-lysine).

  • Mitsuru Naito‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2021‎

Downsizing nanocarriers is a promising strategy for systemically targeting fibrotic cancers, such as pancreatic cancer, owing to enhanced tissue permeability. We recently developed a small oligonucleotide nanocarrier called a unit polyion complex (uPIC) using a single oligonucleotide molecule and one or two molecule(s) of two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The uPIC is a dynamic polyion-pair equilibrated with free bPEG-PLys, and thus, is highly stabilized in the presence of excess amounts of free bPEG-PLys in the bloodstream. However, the dynamic polyion-pairing behavior of uPICs needs to be further investigated for longevity in the bloodstream, especially under lower amounts of free bPEG-PLys. Herein, the polyion-pairing behavior of uPICs was investigated by highlighting oligonucleotide stability and negative charge number. To this end, small interfering RNA (siRNA) and antisense oligonucleotides (ASO) were chemically modified to acquire nuclease resistance, and the ASO was hybridized with complementary RNA (cRNA) to form a hetero-duplex oligonucleotide (HDO) with twice the negative charges. While all oligonucleotides similarly formed sub-20 nm-sized uPICs from a single oligonucleotide molecule, the association number of bPEG-PLys (ANbPEG-PLys) in uPICs varied based on the negative charge number of oligonucleotides (N-), that is, ANbPEG-PLys = ~2 at N- = ~40 (i.e., siRNA and HDO) and ANbPEG-PLys = ~1 at N- = 20 (i.e., ASO), presumably because of the balanced charge neutralization between the oligonucleotide and bPEG-PLys with a positive charge number (N+) of ~20. Ultimately, the uPICs prepared from the chemically modified oligonucleotide with higher negative charges showed considerably longer blood retention than those from the control oligonucleotides without chemical modifications or with lower negative charges. The difference in the blood circulation properties of uPICs was more pronounced under lower amounts of free bPEG-PLys. These results demonstrate that the chemical modification and higher negative charge in oligonucleotides facilitated the polyion-pairing between the oligonucleotide and bPEG-PLys under harsh biological conditions, facilitating enhanced blood circulation of uPICs.


Clinical characteristics and outcome of iatrogenic colonic perforation related to diagnostic vs. therapeutic colonoscopy.

  • Ra Ri Cha‎ et al.
  • Surgical endoscopy‎
  • 2022‎

Iatrogenic colonic perforation (ICP) is a rare serious complication of colonoscopy, where standard treatment is controversial. This study aimed to characterize diagnostic ICP (DICP) compared to therapeutic ICP (TICP) and determine the possible indication of endoscopic repair.


Mitoribosome insufficiency in β cells is associated with type 2 diabetes-like islet failure.

  • Hyun Jung Hong‎ et al.
  • Experimental & molecular medicine‎
  • 2022‎

Genetic variations in mitoribosomal subunits and mitochondrial transcription factors are related to type 2 diabetes. However, the role of islet mitoribosomes in the development of type 2 diabetes has not been determined. We investigated the effects of the mitoribosomal gene on β-cell function and glucose homeostasis. Mitoribosomal gene expression was analyzed in datasets from the NCBI GEO website (GSE25724, GSE76894, and GSE76895) and the European Nucleotide Archive (ERP017126), which contain the transcriptomes of type 2 diabetic and nondiabetic organ donors. We found deregulation of most mitoribosomal genes in islets from individuals with type 2 diabetes, including partial downregulation of CRIF1. The phenotypes of haploinsufficiency in a single mitoribosomal gene were examined using β-cell-specific Crif1 (Mrpl59) heterozygous-deficient mice. Crif1beta+/- mice had normal glucose tolerance, but their islets showed a loss of first-phase glucose-stimulated insulin secretion. They also showed increased β-cell mass associated with higher expression of Reg family genes. However, Crif1beta+/- mice showed earlier islet failure in response to high-fat feeding, which was exacerbated by aging. Haploinsufficiency of a single mitoribosomal gene predisposes rodents to glucose intolerance, which resembles the early stages of type 2 diabetes in humans.


Fructose-functionalized polymers to enhance therapeutic potential of p-boronophenylalanine for neutron capture therapy.

  • Takahiro Nomoto‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2021‎

In boron neutron capture therapy (BNCT), boron drugs should accumulate selectively within a tumor and be quickly cleared from blood and normal organs. However, it is usually challenging to achieve the efficient tumor accumulation and the quick clearance simultaneously. Here we report the complex composed of a fructose-modified poly(ethylene glycol)-poly(l-lysine) block copolymer and p-boronophenylalanine, termed PEG-P[Lys/Lys(fructose)]-BPA, as a boron delivery system permitting selective accumulation within the target tumor with quick clearance from normal organs as well as blood. Our PEG-P[Lys/Lys(fructose)]-BPA could be internalized into tumor cells through LAT1 amino acid transporter-mediated endocytosis and retain in the targeted cells, thereby accomplishing more efficient accumulation and retention in a subcutaneous tumor than clinically used fructose-BPA complexes. Importantly, the moderately cationic property of the polymer facilitated renal clearance and PEG-P[Lys/Lys(fructose)]-BPA exhibited high accumulation contrast between the target tumor and the blood/normal organ. Finally, upon thermal neutron irradiation, PEG-P[Lys/Lys(fructose)]-BPA significantly inhibited the tumor growth in mice. PEG-P[Lys/Lys(fructose)]-BPA may be a promising boron delivery system for BNCT.


Expression of LONP1 Is High in Visceral Adipose Tissue in Obesity, and Is Associated with Glucose and Lipid Metabolism.

  • Ju Hee Lee‎ et al.
  • Endocrinology and metabolism (Seoul, Korea)‎
  • 2021‎

The nature and role of the mitochondrial stress response in adipose tissue in relation to obesity are not yet known. To determine whether the mitochondrial unfolded protein response (UPRmt) in adipose tissue is associated with obesity in humans and rodents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: