Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination.

  • Jose Luis Olmos-Serrano‎ et al.
  • Neuron‎
  • 2016‎

Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.


The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome.

  • Shan Shan Li‎ et al.
  • Scientific reports‎
  • 2016‎

Copy number variations to chromosome 21 (HSA21) cause intellectual disability and Down Syndrome, but our understanding of the HSA21 genetic factors which contribute to fetal brain development remains incomplete. Here, we focussed on the neurodevelopmental functions for EURL (also known as C21ORF91, Refseq Gene ID:54149), a protein-coding gene at the centromeric boundary of the Down Syndrome Critical Region (DSCR) of HSA21. We report that EURL is expressed during human and mouse cerebral cortex development, and we report that alterations to EURL mRNA levels within the human brain underlie Down Syndrome. Our gene perturbation studies in mice demonstrate that disruptions to Eurl impair progenitor proliferation and neuronal differentiation. Also, we find that disruptions to Eurl impair the long-term positioning and dendritic spine densities of cortical projection neurons. We provide evidence that EURL interacts with the coiled-coil domain-containing protein CCDC85B so as to modulate β-catenin levels in cells. Further, we utilised a fluorescent reporter (8xTOPFLASHd2EGFP) to demonstrate that disruptions to Eurl alter β-catenin signalling in vitro as well as in vivo. Together, these studies highlight EURL as an important new player in neuronal development that is likely to impact on the neuropathogenesis of HSA21-related disorders including Down Syndrome.


Overexpression of human GATA-1 and GATA-2 interferes with spine formation and produces depressive behavior in rats.

  • Miyeon Choi‎ et al.
  • PloS one‎
  • 2014‎

Functional consequences to which vertebrate GATA transcription factors contribute in the adult brain remain largely an open question. The present study examines how human GATA-1 and GATA-2 (hGATA-1 and hGATA-2) are linked to neuronal differentiation and depressive behaviors in rats. We investigated the effects of adeno-associated viral expression of hGATA-1 and hGATA-2 (AAV-hGATA1 and AAV-hGATA2) in the dentate gyrus (DG) of the dorsal hippocampus on dendrite branching and spine number. We also examined the influence of AAV-hGATA1 and AAV-hGATA2 infusions into the dorsal hippocampus on rodent behavior in models of depression. Viral expression of hGATA-1 and hGATA-2 cDNA in rat hippocampal neurons impaired dendritic outgrowth and spine formation. Moreover, viral-mediated expression of hGATA-1 and hGATA-2 in the dorsal hippocampus caused depressive-like deficits in the forced swim test and learned helplessness models of depression, and decreased the expression of several synapse-related genes as well as spine number in hippocampal neurons. Conversely, shRNA knockdown of GATA-2 increased synapse-related gene expression, spine number, and dendrite branching. The results demonstrate that hGATA-1 and hGATA-2 expression in hippocampus is sufficient to cause depressive like behaviors that are associated with reduction in spine synapse density and expression of synapse-related genes.


Rare deleterious mutations of the gene EFR3A in autism spectrum disorders.

  • Abha R Gupta‎ et al.
  • Molecular autism‎
  • 2014‎

Whole-exome sequencing studies in autism spectrum disorder (ASD) have identified de novo mutations in novel candidate genes, including the synaptic gene Eighty-five Requiring 3A (EFR3A). EFR3A is a critical component of a protein complex required for the synthesis of the phosphoinositide PtdIns4P, which has a variety of functions at the neural synapse. We hypothesized that deleterious mutations in EFR3A would be significantly associated with ASD.


Spatio-temporal transcriptome of the human brain.

  • Hyo Jung Kang‎ et al.
  • Nature‎
  • 2011‎

Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.


Correlation of the Korean Version of Falls Efficacy Scale-International With Quantitative Balance and Gait Parameters Through Exercise Program in Elderly Men.

  • Bo Ram Ahn‎ et al.
  • Annals of rehabilitation medicine‎
  • 2019‎

To determine correlation of the Korean version of Falls Efficacy Scale-International (KFES-I) with other gait and balance parameters through exercise program in older men.


A genetic variation in microRNA target site of ETS2 is associated with clinical outcomes of paclitaxel-cisplatin chemotherapy in non-small cell lung cancer.

  • Mi Jeong Hong‎ et al.
  • Oncotarget‎
  • 2016‎

The present study was performed to investigate the association of single nucleotide polymorphisms (SNPs) located in the miRNA target sites with the clinical outcomes of first line paclitaxel-cisplatin chemotherapy in advanced NSCLC. Eighty SNPs in miRNA binding sites of cancer related genes selected from 18,500 miRNA:target bindings in crosslinking, ligation, and sequencing of hybrids (CLASH) data were investigated in 379 advanced NSCLC patients using a sequenom mass spectrometry-based genotype assay. qRT-PCR and luciferase assay were conducted to examine functional relevance of potentially functional SNPs in miRNA binding sites. Of the 80 SNPs analyzed, 16 SNPs were significantly associated with the clinical outcomes after chemotherapy. Among these, ANAPC1 rs3814026C>T, ETS2 rs461155A>G, SORBS1 rs7081076C>A and POLR2A rs2071504C>T could predict both chemotherapy response and survival. Notably, ETS2 rs461155A>G was significantly associated with decreased ETS2 mRNA expression in both tumor and paired normal lung tissues (Ptrend = 4 × 10-7, and 3 × 10-4, respectively). Consistently, a decreased expression of the reporter gene for the G allele of rs461155 compared with the A allele was observed by luciferase assay. These findings suggest that the four SNPs, especially ETS2 rs461155A>G, could be used as biomarkers predicting the clinical outcomes of NSCLC patients treated with first-line paclitaxel-cisplatin chemotherapy.


Correlation between Ultrasonography Findings and Electrodiagnostic Severity in Carpal Tunnel Syndrome: 3D Ultrasonography.

  • Hee Kyu Kwon‎ et al.
  • Journal of clinical neurology (Seoul, Korea)‎
  • 2014‎

To determine the correlation between the cross-sectional area (CSA) of the median nerve measured at the wrist using three-dimensional (3D) ultrasonography (US) and the electrophysiological severity of carpal tunnel syndrome (CTS).


Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress.

  • Pawel Licznerski‎ et al.
  • PLoS biology‎
  • 2015‎

Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology.


Evaluation of the diagnostic performance of a decision tree model in suspected acute appendicitis with equivocal preoperative computed tomography findings compared with Alvarado, Eskelinen, and adult appendicitis scores: A STARD compliant article.

  • Hyo Jung Kang‎ et al.
  • Medicine‎
  • 2019‎

This study evaluated the diagnostic performance of a new clinical approach based on decision tree (DT) analysis in adult patients with equivocal computed tomography (CT) findings of acute appendicitis (AA) compared with previous scoring systems.This retrospective study of 244 adult patients with equivocal CT findings included appendicitis (AG, n = 80) and non-appendicitis (NAG, n = 164) groups. The chi-squared automatic interaction detection algorithm was for AA prediction. A receiver operating characteristic curve analysis and area under the curve (AUC) were used to compare the DT analysis with Alvarado, Eskelinen score, and adult appendicitis scores (AAS).The following factors were selected for AA prediction: rebound tenderness severity, migration, urinalysis, symptom duration, leukocytosis, neutrophil count, and C-reactive protein levels. The DT comprised 11 final nodes with the following AA probabilities: node 1, 100% (16/16); node 2, 90% (9/10); node 3, 80% (8/10); node 4, 60.9% (14/23); node 5, 50% (3/6); node 6, 43.8% (7/16); node 7, 22.6% (12/53); node 8, 13% (10/77); node 9, 5.6% (1/18); node 10, 0% (0/12); and node 11, 0% (0/3). The AUC of the DT was higher (0.850 [95% confidence interval {CI}; 0.799-0.893]) than the Alvarado score (0.695 [95% CI; 0.633-0.752]), AAS (0.749 [95% CI; 0.690-0.802]), and the Eskelinen score (0.715 [95% CI; 0.654-0.770]). The results were statistically significant when compared with the AUCs of the Alvarado score, Eskelinen score, and AAS (P < .001, P < .001, P = .003, respectively).The DT-based approach facilitated AA diagnosis and determination of clinical status in patients with equivocal preoperative CT findings and ambiguous results.


Effective Site for the Application of Extracorporeal Shock-Wave Therapy on Spasticity in Chronic Stroke: Muscle Belly or Myotendinous Junction.

  • Sang Ho Yoon‎ et al.
  • Annals of rehabilitation medicine‎
  • 2017‎

To compare the effect of extracorporeal shock-wave therapy (ESWT) applied at the muscle belly and myotendinous junction on spasticity in the upper and lower limbs of chronic stroke patients.


Myelination defects in the medial prefrontal cortex of Fkbp5 knockout mice.

  • Koeul Choi‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2021‎

The hypothalamic-pituitary-adrenal (HPA) axis plays a principal role in stress response regulation and has been implicated in the etiology of stress-related disorders. The HPA axis regulates the normal synthesis and release of glucocorticoids; dysregulation of the HPA axis causes abnormal responses to stress. FK506-binding protein 5 (FKBP5), a co-chaperone of heat shock protein 90 in the glucocorticoid receptor (GR) molecular complex, is a key GR sensitivity regulator. FKBP5 single nucleotide polymorphisms are associated with dysregulated HPA axis and increased risk of stress-related disorders, including posttraumatic stress disorder (PTSD) and depression. In this study, we profiled the microRNAs (miRNAs) in the medial prefrontal cortex of Fkbp5 knockout (Fkbp5-/- ) mice and identified the target genes of differentially expressed miRNAs using sequence-based miRNA target prediction. Gene ontology analysis revealed that the differentially expressed miRNAs were involved in nervous system development, regulation of cell migration, and intracellular signal transduction. The validation of the expression of predicted target genes using quantitative polymerase chain reaction revealed that the expression of axon development-related genes, specifically actin-binding LIM protein 1 (Ablim1), lemur tyrosine kinase 2 (Lmtk2), kinesin family member 5c (Kif5c), neurofascin (Nfasc), and ephrin type-A receptor 4 (Epha4), was significantly decreased, while that of brain-derived neurotrophic factor (Bdnf) was significantly increased in the brain of Fkbp5-/- mice. These results suggest that axonal development-related genes can serve as potential targets in future studies focused on understanding the pathophysiology of PTSD.


Comparison of antimicrobial resistance and molecular characterization of Escherichia coli isolates from layer breeder farms in Korea.

  • Dong Gyu Kim‎ et al.
  • Poultry science‎
  • 2022‎

In Korea, 4 big layer companies that possess one grandparent and 3 parent stocks are in charge of 100% of the layer chicken industry. In this study, we investigated the antimicrobial resistance of commensal 578 E. coli isolated from 20 flocks of 4-layer breeder farms (A, B, C, and D), moreover, compared the characteristics of their resistance and virulence genes. Isolates from farms B and D showed significantly higher resistance to the β-lactam antimicrobials (amoxicillin, ampicillin, and 1st-, 2nd-, and 3rd-generation cephalosporins). However, resistance to ciprofloxacin, nalidixic acid, and tetracycline was significantly higher in the isolates from farm A (P < 0.05). Interestingly, the isolates from farm C showed significantly lower resistance to most antimicrobials tested in this study. The isolates from farms B, C, and D showed the high multiple resistance to the 3 antimicrobial classes. Furthermore, the isolates from farm A showed the highest multiple resistance against the 5 classes. Among the 412 β-lactam-resistant isolates, 123 (29.9%) carried blaTEM-1, but the distribution was significantly different among the farms from 17.5% to 51.4% (P < 0.05). Similarly, the most prevalent tetracycline resistance gene in the isolates from farms B, C, and D was tetA (50.0-77.0%); however, the isolates from farm A showed the highest prevalence in tetB (70.6%). The distribution of quinolone (qnrB, qnrD, and qnrS) and sulfonamide (su12)-resistant genes were also significantly different among the farms but that of chloramphenicol (catA1)- and aminoglycoside (aac [3]-II, and aac [6']-Ib)-resistant genes possessed no significant difference among the farms. Moreover, the isolates from farm C showed significantly higher prevalence in virulence genes (iroN, ompT, hlyF, and iss) than the other 3 farms (P < 0.05). Furthermore, the phenotypic and genotypic characteristics of E. coli isolates were significantly different among the farms, and improved management protocols are required to control of horizontal and vertical transmission of avian disease, including the dissemination of resistant bacteria in breeder flocks.


Decreased expression of synapse-related genes and loss of synapses in major depressive disorder.

  • Hyo Jung Kang‎ et al.
  • Nature medicine‎
  • 2012‎

Previous imaging and postmortem studies have reported a lower brain volume and a smaller size and density of neurons in the dorsolateral prefrontal cortex (dlPFC) of subjects with major depressive disorder (MDD). These findings suggest that synapse number and function are decreased in the dlPFC of patients with MDD. However, there has been no direct evidence reported for synapse loss in MDD, and the gene expression alterations underlying these effects have not been identified. Here we use microarray gene profiling and electron microscopic stereology to reveal lower expression of synaptic-function–related genes (CALM2, SYN1, RAB3A, RAB4B and TUBB4) in the dlPFC of subjects with MDD and a corresponding lower number of synapses. We also identify a transcriptional repressor, GATA1, expression of which is higher in MDD and that, when expressed in PFC neurons, is sufficient to decrease the expression of synapse-related genes, cause loss of dendritic spines and dendrites, and produce depressive behavior in rat models of depression.


FKBP5-associated miRNA signature as a putative biomarker for PTSD in recently traumatized individuals.

  • Hyo Jung Kang‎ et al.
  • Scientific reports‎
  • 2020‎

The epigenetic regulation of microRNA (miRNA) expression related to the FK506-binding protein 5 (FKBP5) gene may contribute to the risk of stress-related disorders such as posttraumatic stress disorder (PTSD). Here, we identified candidate miRNAs derived from FKBP5 knockout mice as a potential diagnostic biomarker of PTSD. Using a translational approach, candidate miRNAs found to alter in expression within the medial prefrontal cortex of FKBP5 knockout mice were selected. Each candidate miRNA was examined in the serum of 48 recently traumatized individuals with PTSD and 47 healthy individuals. Multimodal imaging was also conducted to identify the neural correlates for the expression of candidate exosomal miRNAs in response to trauma exposure. Differential miRNA expression was found according to PTSD diagnosis in two composite marker groups. The differential miRNA expression between the composite marker groups contributed to PTSD symptom severity, which may be explained by differential recruitment of prefrontolimbic activity in brain imaging. The present study reveals that a set of circulating exosomal miRNAs showing altered expression in FKBP5 knockout mice play a potential role as epigenetic markers of PTSD. The corroborative evidence from multiple levels including molecular, brain, and behavioral indicates that these epigenetic biomarkers may serve as complementary measures for the diagnosis and prognosis prediction of PTSD in recently traumatized individuals.


A Bibliometric Analysis Using Alternative Metrics for Articles in the Annals of Rehabilitation Medicine.

  • Seok Cheol Han‎ et al.
  • Annals of rehabilitation medicine‎
  • 2020‎

To investigate the articles in the Annals of Rehabilitation Medicine (ARM) using a bibliometric analysis to verify whether there is a correlation between the topics of interest for expert groups and the public media.


The Different Effect of VEGF Polymorphisms on the Prognosis of Non-Small Cell Lung Cancer according to Tumor Histology.

  • Soyeon Lee‎ et al.
  • Journal of Korean medical science‎
  • 2016‎

Vascular endothelial growth factor (VEGF) contributes to tumor angiogenesis. The role of VEGF single nucleotide polymorphisms (SNPs) in lung cancer susceptibility and its prognosis remains inconclusive and controversial. This study was performed to investigate whether VEGF polymorphisms affect survival outcomes of patients with early stage non-small cell lung cancer (NSCLC) after surgery. Three potentially functional VEGF SNPs (rs833061T>C, rs2010963G>C, and rs3025039C>T) were genotyped. A total of 782 NSCLC patients who were treated with surgical resection were enrolled. The association of the SNPs with overall survival (OS) and disease free survival (DFS) was analyzed. In overall population, none of the three polymorphisms were significantly associated with OS or DFS. However, when the patients were stratified by tumor histology, squamous cell carcinoma (SCC) and adenocarcinoma (AC) had significantly different OS (Adjusted hazard ratio [aHR] = 0.76, 95% CI = 0.56-1.03 in SCC; aHR = 1.33, 95% CI = 0.98-1.82 in AC; P for heterogeneity = 0.01) and DFS (aHR = 0.75, 95% CI = 0.58-0.97 in SCC; aHR = 1.26, 95% CI = 1.00-1.60 in AC; P for heterogeneity = 0.004) according to the rs833061T>C genotypes. Our results suggest that the prognostic role of VEGF rs833061T>C may differ depending on tumor histology.


Genetic polymorphisms in glycolytic pathway are associated with the prognosis of patients with early stage non-small cell lung cancer.

  • Shin Yup Lee‎ et al.
  • Scientific reports‎
  • 2016‎

This study was conducted to investigate whether polymorphisms of genes involved in glycolysis are associated with the prognosis of patients with non-small cell lung cancer (NSCLC) after surgical resection. Forty-four single nucleotide polymorphisms (SNPs) of 17 genes in glycolytic pathway were investigated in a total of 782 patients with NSCLC who underwent curative surgical resection. The association of the SNPs with overall survival (OS) and disease free survival (DFS) were analyzed. Among the 44 SNPs investigated, four SNPs (ENO1 rs2274971A > G, PFKM rs11168417C > T, PFKP rs1132173C > T, PDK2 rs3785921G > A) were significantly associated with survival outcomes in multivariate analyses. When stratified by tumor histology, three SNPs (ENO1 rs2274971A > G, PFKM rs11168417C > T, and PDK2 rs3785921G > A) were significantly associated with OS and/or DFS only in squamous cell carcinoma, whereas PFKP rs1132173C > T exhibited a significant association with survival outcomes only in adenocarcinoma. When the four SNPs were combined, OS and DFS decreased as the number of bad genotypes increased (Ptrend = 8 × 10-4 and 3 × 10-5, respectively). Promoter assays showed that ENO1 rs2274971G allele had significantly higher promoter activity compared to the rs2274971A allele. The four SNPs, especially ENO1 rs2274971A > G, may be useful for the prediction of prognosis in patients with surgically resected NSCLC.


Continuous centrifugal microfluidics (CCM) isolates heterogeneous circulating tumor cells via full automation.

  • Hyeong Jung Woo‎ et al.
  • Theranostics‎
  • 2022‎

Understanding cancer heterogeneity is essential to finding diverse genetic mutations in metastatic cancers. Thus, it is critical to isolate all types of CTCs to identify accurate cancer information from patients. Moreover, full automation robustly capturing the full spectrum of CTCs is an urgent need for CTC diagnosis to be routine clinical practice. Methods: Here we report the full capture of heterogeneous CTC populations using fully automated, negative depletion-based continuous centrifugal microfluidics (CCM). Results: The CCM system demonstrated high performance (recovery rates exceeding 90% and WBC depletion rate of 99.9%) across a wide range of phenotypes (EpCAM(+), EpCAM(-), small-, large-sized, and cluster) and cancers (lung, breast, and bladder). Applied in 30 lung adenocarcinoma patients harboring epidermal growth factor receptor (EGFR) mutations, the system isolated diverse phenotypes of CTCs in marker expression and size, implying the importance of unbiased isolation. Genetic analyses of intra-patient samples comparing cell-free DNA with CCM-isolated CTCs yielded perfect concordance, and CTC enumeration using our technique was correlated with clinical progression as well as response to EGFR inhibitors. Conclusion: Our system also introduces technical advances which assure rapid, reliable, and reproducible results, thus enabling a more comprehensive application of robust CTC analysis in clinical practice.


SELENBP1 overexpression in the prefrontal cortex underlies negative symptoms of schizophrenia.

  • Soojin Kim‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The selenium-binding protein 1 (SELENBP1) has been reported to be up-regulated in the prefrontal cortex (PFC) of schizophrenia patients in postmortem reports. However, no causative link between SELENBP1 and schizophrenia has yet been established. Here, we provide evidence linking the upregulation of SELENBP1 in the PFC of mice with the negative symptoms of schizophrenia. We verified the levels of SELENBP1 transcripts in postmortem PFC brain tissues from patients with schizophrenia and matched healthy controls. We also generated transgenic mice expressing human SELENBP1 (hSELENBP1 Tg) and examined their neuropathological features, intrinsic firing properties of PFC 2/3-layer pyramidal neurons, and frontal cortex (FC) electroencephalographic (EEG) responses to auditory stimuli. Schizophrenia-like behaviors in hSELENBP1 Tg mice and mice expressing Selenbp1 in the FC were assessed. SELENBP1 transcript levels were higher in the brains of patients with schizophrenia than in those of matched healthy controls. The hSELENBP1 Tg mice displayed negative endophenotype behaviors, including heterotopias- and ectopias-like anatomical deformities in upper-layer cortical neurons and social withdrawal, deficits in nesting, and anhedonia-like behavior. Additionally, hSELENBP1 Tg mice exhibited reduced excitabilities of PFC 2/3-layer pyramidal neurons and abnormalities in EEG biomarkers observed in schizophrenia. Furthermore, mice overexpressing Selenbp1 in FC showed deficits in sociability. These results suggest that upregulation of SELENBP1 in the PFC causes asociality, a negative symptom of schizophrenia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: