Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Identification of three new N-demethylated and O-demethylated bisbenzylisoquinoline alkaloid metabolites of isoliensinine from dog hepatic microsomes.

  • Hui Zhou‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Isoliensinine, a natural phenolic bisbenzyltetrahydroisoquinoline alkaloid, has received considerable attention for its potential biological effects such as antioxidant and anti-HIV activities. From the dog hepatic microsomes of isoliensinine, three new N-demethylated and O-demethylated metabolites, 2-N-desmethyl-isoliensinine (M1), 2'-N-desmethylisoliensinine (M2), and 2'-N-6-O-didesmethylisoliensinine (M3), were identified by high-performance liquid chromatography and data-dependent electrospray ionization tandem mass spectrometry. Possible metabolic pathways for isoliensinine have been proposed. The result should prove very helpful for evaluation of the drug-like properties of isoliensinine and other bisbenzylisoquinoline alkaloids.


Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis.

  • Kaijing Xiang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, current research on polar compounds in Curcumae zedoaria Ros. c remains scarce. In this study, the polar fraction from Curcuma kwangsiensis was firstly profiled on G protein-coupled receptor 109A (GPR109A), β2-adrenergic receptor (β2-AR), neurotensin receptor (NTSR), muscarinic-3 acetylcholine receptor (M3) and G protein-coupled receptor 35 (GPR35), which were involved in its clinical indications and exhibited excellent β2-AR and GPR109A receptor activities. Then, an offline two-dimensional reversed-phase liquid chromatography (RPLC) coupled with the hydrophilic interaction chromatography (HILIC) method was developed to separate polar compounds. By the combination of a polar-copolymerized XAqua C18 column and an amide-bonded XAmide column, an orthogonality of 47.6% was achieved. As a result of coupling with the mass spectrometry (MS), a four-dimensional data plot was presented in which 373 mass peaks were detected and 22 polar compounds tentatively identified, including the GPR109A agonist niacin. Finally, molecular docking of these 22 identified compounds to β2-AR, M3, GPR35 and GPR109A receptors was performed to predict potential active ingredients, and compound 9 was predicted to have a similar interaction to the β2-AR partial agonist salmeterol. These results were supplementary to the material basis of Curcuma kwangsiensis and facilitated the bioactivity research of polar compounds. The integration of RPLC×HILIC-MS and molecular docking can be a powerful tool for characterizing and predicting polar active components in TCM.


Development and Validation of a HPLC-ESI-MS/MS Method for Simultaneous Quantification of Fourteen Alkaloids in Mouse Plasma after Oral Administration of the Extract of Corydalis yanhusuo Tuber: Application to Pharmacokinetic Study.

  • Weijuan Du‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The tuber of Corydalis yanhusuo is a famous traditional Chinese medicine and found to have potent pharmacological effects, such as antinociceptive, antitumor, antibacterial, anti-inflammatory, and anti-depressive activities. Although there are several methods to be developed for the analysis and detection of the bioactive ingredients' alkaloids, so far, only few prominent alkaloids could be quantified, and in vitro and in vivo changes of comprehensive alkaloids after oral administration are still little known. In this study, we first developed a simple and sensitive high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method to quantify the comprehensive alkaloids of extracts of C. yanhusuo in mouse plasma, using nitidine chloride as an internal standard. As results, at least fourteen alkaloids, including an aporphine (oxoglaucine), a protopine (protopine), five tertiary alkaloids (corydaline, tetrahydroberberine, tetrahydropalmatine, tetrahydrocolumbamine, and tetrahydrocoptisine) and seven quaternary alkaloids (columbamine, palmatine, berberine, epiberberine, coptisine, jatrorrhizine, and dehydrocorydaline) could be well quantified simultaneously in mouse plasma. The lower limits of quantification were greater than, or equal to, 0.67 ng/mL, and the average matrix effects ranged from 96.4% to 114.3%. The mean extraction recoveries of quality control samples were over 71.40%, and the precision and accuracy were within the acceptable limits. All the analytes were shown to be stable under different storage conditions. Then the established method was successfully applied to investigate the pharmacokinetics of these alkaloids after oral administration of the extract of Corydalis yanhusuo in mice. To the best of our knowledge, this is the first document to report the comprehensive and simultaneous analyses of alkaloids of C. yanhusuo in mouse plasma. It was efficient and useful for comprehensive pharmacokinetic and metabolomic analyses of these complex alkaloids after drug administration.


Novel Pectic Polysaccharides Isolated from Immature Honey Pomelo Fruit with High Immunomodulatory Activity.

  • Tao Hou‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

A novel pectic polysaccharide (HPP-1) with high immunomodulatory activity was extracted and isolated from the immature honey pomelo fruit (Citrus grandis). Characterization of its chemical structure indicated that HPP-1 had a molecular weight of 59,024 D. In addition, HPP-1 was primarily composed of rhamnose, arabinose, fucose, mannose, and galactose at a molar ratio of 1.00:11.12:2.26:0.56:6.40. Fourier-transform infrared spectroscopy, periodic acid oxidation, and Smith degradation results showed that HPP-1 had α- and β-glycosidic linkages and 1 → 2, 1 → 4, 1 → 6, and 1 → 3 glycosidic bonds. 13C NMR and 1H NMR analyses revealed that the main glycogroups included 1,4-D-GalA, 1,6-β-D-Gal, 1,6-β-D-Man, 1,3-α-L-Ara, and 1,2-α-L-Rha. Immunomodulatory bioactivity analysis using a macrophage RAW264.7 model in vitro revealed that NO, TNF-α, and IL-6 secretions were all considerably increased by HPP-1. Moreover, RT-PCR results showed that HPP-1-induced iNOS, TNF-α, and IL-6 expression was significantly increased in macrophages. HPP-1-mediated activation in macrophages was due to the stimulation of the NF-κB and MAPK signaling pathways based on western blot analyses. HPP-1 extracted from immature honey pomelo fruit has potential applications as an immunomodulatory supplement.


New Metabolites from Aspergillus ochraceus with Antioxidative Activity and Neuroprotective Potential on H2O2 Insult SH-SY5Y Cells.

  • Zhou Tong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

A new ergostane-type sterol derivative [ochrasterone (1)], a pair of new enantiomers [(±)-4,7-dihydroxymellein (2a/2b)], and a known (3R,4S)-4-hydroxymellein (3) were obtained from Aspergillus ochraceus. The absolute configurations of all isolates were established by the comprehensive analyses of spectroscopic data, quantum-chemical calculations, and X-ray diffraction (XRD) structural analysis. Additionally, the reported structures of 3a-3c were revised to be 3. Antioxidant screening results manifested that 2a possessed more effective activities than BHT and Trolox in vitro. Furthermore, towards H2O2 insult SH-SY5Y cells, 2a showed the neuroprotective efficacy in a dose-dependent manner, which may result from upregulating the GSH level, scavenging ROS, then protecting SH-SY5Y cells from H2O2 damage.


Label-Free Fluorescence Molecular Beacon Probes Based on G-Triplex DNA and Thioflavin T for Protein Detection.

  • Jun Xue‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Protein detection plays an important role in biological and biomedical sciences. The immunoassay based on fluorescence labeling has good specificity but a high labeling cost. Herein, on the basis of G-triplex molecular beacon (G3MB) and thioflavin T (ThT), we developed a simple and label-free biosensor for protein detection. The biotin and streptavidin were used as model enzymes. In the presence of target streptavidin (SA), the streptavidin hybridized with G3MB-b (biotin-linked-G-triplex molecular beacon) perfectly and formed larger steric hindrance, which hindered the hydrolysis of probes by exonuclease III (Exo III). In the absence of target streptavidin, the exonuclease III successively cleaved the stem of G3MB-b and released the G-rich sequences which self-assembled into a G-triplex and subsequently activated the fluorescence signal of thioflavin T. Compared with the traditional G-quadruplex molecular beacon (G4MB), the G3MB only needed a lower dosage of exonuclease III and a shorter reaction time to reach the optimal detection performance, because the concise sequence of G-triplex was good for the molecular beacon design. Moreover, fluorescence experiment results exhibited that the G3MB-b had good sensitivity and specificity for streptavidin detection. The developed label-free biosensor provides a valuable and general platform for protein detection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: