Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

A joint analysis of metabolomic profiles associated with muscle mass and strength in Caucasian women.

  • Qi Zhao‎ et al.
  • Aging‎
  • 2018‎

Both loss of muscle mass and strength are important sarcopenia-related traits. In this study, we investigated both specific and shared serum metabolites associated with these two traits in 136 Caucasian women using a liquid chromatography-mass spectrometry method. A joint analysis of multivariate traits was used to examine the associations of individual metabolites with muscle mass measured by the body mass index-adjusted appendicular lean mass (ALM/BMI) and muscle strength measured by hand grip strength (HGS). After adjusting for multiple testing, nine metabolites including two amino acids (aspartic acid and glutamic acid) and an amino acid derive (pipecolic acid), one peptide (phenylalanyl-threonine), one carbohydrate (methyl beta-D-glucopyranoside), and four lipids (12S-HETRE, arachidonic acid, 12S-HETE, and glycerophosphocholine) were significant in the joint analysis. Of them, the two amino acids (aspartic acid and glutamic acid) and two lipids (12S-HETRE and 12S-HETE) were associated with both ALM/BMI and HGS, and the other five were only associated with ALM/BMI. The pathway analysis showed the amino acid metabolism pathways (aspartic acid and glutamic acid) might play important roles in the regulation of muscle mass and strength. In conclusion, our study identified novel metabolites associated with sarcopenia-related traits, suggesting novel metabolic pathways for muscle regulation.


Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex.

  • Yuanyuan Li‎ et al.
  • Aging‎
  • 2020‎

Brain ischemia results from cardiac arrest, stroke or head trauma. The structural basis of rescuing the synaptic impairment and cortical dysfunctions induced in the stage of ischemic-reperfusion can occur if therapeutic interventions are applied in time, but the functional basis for this resilience remains elusive. Here, we explore the changes in cortical activity and a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA1 subunit in spine (sGluA1) after transient ischemia-reperfusion in vivo for 28 days. Using in vivo two-photon microscopy in the mouse somatosensory cortex, we found that the average frequency of Ca2+ transients in the spine (there was an unusual synchrony) was higher after 15 min of ischemia-reperfusion. In addition, the transient ischemia-reperfusion caused a reflective enhancement of AMPARs, which eventually restored to normal. The cortical hyperactivity (Ca2+ transients) and the increase in AMPARs were successfully blocked by an NMDA receptor antagonist. Thus, the increase of AMPARs, cortical hyperactivity and the unusual synchrony might be the reason for reperfusion injury after short-term transient ischemia.


Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels.

  • Tianwen Huang‎ et al.
  • Aging‎
  • 2020‎

Pink1, Parkin and Fbxo7, three autosomal recessive familial genes of Parkinson's disease (PD), have been implicated in mitophagy pathways for quality control and clearance of damaged mitochondria, but the interplay of these three genes still remains unclear. Here we present that Fbxo7 and Pink1 play a reciprocal role in the regulation of their protein levels. Regardless of the genotypes of Fbxo7, the wild type and the PD familial mutants of Fbxo7 stabilize the processed form of Pink1, supporting the prior study that none of the PD familial mutations in Fbxo7 have an effect on the interaction with Pink1. On the other hand, the interaction of Fbxo7 with Bag2 further facilitates its capability to stabilize Pink1. Intriguingly, the stabilization of Fbxo7 by Pink1 is specifically observed in substantial nigra pars compacta but striatum and cerebral cortex. Taken together, our findings support the notion that Fbxo7 as a scaffold protein has a chaperon activity in the stabilization of proteins.


A systematic dissection of human primary osteoblasts in vivo at single-cell resolution.

  • Yun Gong‎ et al.
  • Aging‎
  • 2021‎

Human osteoblasts are multifunctional bone cells, which play essential roles in bone formation, angiogenesis regulation, as well as maintenance of hematopoiesis. However, the categorization of primary osteoblast subtypes in vivo in humans has not yet been achieved. Here, we used single-cell RNA sequencing (scRNA-seq) to perform a systematic cellular taxonomy dissection of freshly isolated human osteoblasts from one 31-year-old male with osteoarthritis and osteopenia after hip replacement. Based on the gene expression patterns and cell lineage reconstruction, we identified three distinct cell clusters including preosteoblasts, mature osteoblasts, and an undetermined rare osteoblast subpopulation. This novel subtype was found to be the major source of the nuclear receptor subfamily 4 group A member 1 and 2 (NR4A1 and NR4A2) in primary osteoblasts, and the expression of NR4A1 was confirmed by immunofluorescence staining on mouse osteoblasts in vivo. Trajectory inference analysis suggested that the undetermined cluster, together with the preosteoblasts, are involved in the regulation of osteoblastogenesis and also give rise to mature osteoblasts. Investigation of the biological processes and signaling pathways enriched in each subpopulation revealed that in addition to bone formation, preosteoblasts and undetermined osteoblasts may also regulate both angiogenesis and hemopoiesis. Finally, we demonstrated that there are systematic differences between the transcriptional profiles of human and mouse osteoblasts, highlighting the necessity for studying bone physiological processes in humans rather than solely relying on mouse models. Our findings provide novel insights into the cellular heterogeneity and potential biological functions of human primary osteoblasts at the single-cell level.


Estradiol-induced senescence of hypothalamic astrocytes contributes to aging-related reproductive function declines in female mice.

  • Xiaoman Dai‎ et al.
  • Aging‎
  • 2020‎

Hypothalamic astrocytes are important contributors that activate gonadotropin-releasing hormone (GnRH) neurons and promote GnRH/LH (luteinizing hormone) surge. However, the potential roles and mechanisms of astrocytes during the early reproductive decline remain obscure. The current study reported that, in intact middle-aged female mice, astrocytes within the hypothalamic RP3V accumulated senescence-related markers with increasing age. It employed an ovariectomized animal model and a cell model receiving estrogen intervention to confirm the estrogen-induced senescence of hypothalamic astrocytes. It found that estrogen metabolites may be an important factor for the estrogen-induced astrocyte senescence. In vitro molecular analysis revealed that ovarian estradiol activated PKA and up-regulated CYPs expression, metabolizing estradiol into 2-OHE2 and 4-OHE2. Of note, in middle-aged mice, the progesterone synthesis and the ability to promote GnRH release were significantly reduced. Besides, the expression of growth factors decreased and the mRNA levels of proinflammatory cytokines significantly increased in the aging astrocytes. The findings confirm that ovarian estradiol induces the senescence of hypothalamic astrocytes and that the senescent astrocytes compromise the regulation of progesterone synthesis and GnRH secretion, which may contribute to the aging-related declines in female reproductive function.


Regulation of PGC-1α mediated by acetylation and phosphorylation in MPP+ induced cell model of Parkinson's disease.

  • Fei Fan‎ et al.
  • Aging‎
  • 2020‎

Parkinson's disease (PD) is one of the most common neurodegenerative diseases with complex etiology in sporadic cases. Accumulating evidence suggests that oxidative stress and defects in mitochondrial dynamics are associated with the pathogenesis of PD. The oxidative stress and mitochondrial dynamics are regulated strictly by peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). We investigated whether acetylation and phosphorylation of PGC-1α contribute to protecting neuronal cell against oxidative stress.


Single-cell RNA sequencing of human femoral head in vivo.

  • Xiang Qiu‎ et al.
  • Aging‎
  • 2021‎

The homeostasis of bone metabolism depends on the coupling and precise regulation of various types of cells in bone tissue. However, the communication and interaction between bone tissue cells at the single-cell level remains poorly understood. Thus, we performed single-cell RNA sequencing (scRNA-seq) on the primary human femoral head tissue cells (FHTCs). Nine cell types were identified in 26,574 primary human FHTCs, including granulocytes, T cells, monocytes, B cells, red blood cells, osteoblastic lineage cells, endothelial cells, endothelial progenitor cells (EPCs) and plasmacytoid dendritic cells. We identified serine protease 23 (PRSS23) and matrix remodeling associated protein 8 (MXRA8) as novel bone metabolism-related genes. Additionally, we found that several subtypes of monocytes, T cells and B cells were related to bone metabolism. Cell-cell communication analysis showed that collagen, chemokine, transforming growth factor and their ligands have significant roles in the crosstalks between FHTCs. In particular, EPCs communicated with osteoblastic lineage cells closely via the "COL2A1-ITGB1" interaction pair. Collectively, this study provided an initial characterization of the cellular composition of the human FHTCs and the complex crosstalks between them at the single-cell level. It is a unique starting resource for in-depth insights into bone metabolism.


Beneficial effects of PGC-1α in the substantia nigra of a mouse model of MPTP-induced dopaminergic neurotoxicity.

  • Yingqing Wang‎ et al.
  • Aging‎
  • 2019‎

Mitochondrial dysfunction and oxidative stress are closely associated with the pathogenesis of Parkinson's disease. Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) is thought to play multiple roles in the regulation of mitochondrial biogenesis and cellular energy metabolism. We recently reported that altering PGC-1α gene expression modulates mitochondrial functions in N-methyl-4-phenylpyridinium ion (MPP+) treated human SH-SY5Y neuroblastoma cells, possibly via the regulation of Estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2) and peroxisome proliferator-activated receptor γ (PPARγ) expression. In the present study, we aimed to further investigate the potential beneficial effects of PGC-1α in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated C57BL mice.


Pathway-based metabolomics study of sarcopenia-related traits in two US cohorts.

  • Qi Zhao‎ et al.
  • Aging‎
  • 2022‎

We aimed to validate two metabolites, aspartic acid and glutamic acid, which were associated with sarcopenia-related traits, muscle mass and strength, in our previous untargeted metabolomics study and to identify novel metabolites from five metabolic pathways involving these two metabolites. We included a discovery cohort of 136 white women aged 20-40 years (used for the previous untargeted metabolomics analysis) and a validation cohort of 174 subjects aged ≥ 60 years, including men and women of white and black. A targeted LC-MS assay successfully detected 12 important metabolites from these pathways. Aspartic acid was associated with muscle mass and strength in the discovery cohort, but not in the validation cohort. However, glutamic acid was associated with these sarcopenia traits in both cohorts. Additionally, N-acetyl-L-aspartic acid and carnosine were the newly identified metabolites that were associated with muscle strength in the discovery and validation cohorts, respectively. We did not observe any significant sex and race differences in the associations of these metabolites with sarcopenia traits in the validation cohort. Our findings indicated that glutamic acid might be consistently associated with sarcopenia-related traits across age, sex, and race. They also suggested that age-specific metabolites and metabolic pathways might be involved in muscle regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: