Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Neutrophil membrane engineered HucMSC sEVs alleviate cisplatin-induced AKI by enhancing cellular uptake and targeting.

  • Peipei Wu‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (hucMSC-sEVs) have been demonstrated as a therapeutic agent to prevent and treat cisplatin-induced acute kidney injury (AKI). However, hucMSC-sEVs still face many problems and challenges in the repair and treatment of tissue injury, including short circulation time, insufficient targeting, and low therapeutic efficacy. Therefore, we constructed engineered hybrid vesicles fused with nanovesicles derived from human neutrophil membranes and hucMSC-sEVs, named neutrophil membrane engineered hucMSC-sEVs (NEX). NEX significantly enhanced the targeting of hucMSC-sEVs to injured kidney tissues, improved the impaired renal function via reducing pro-inflammatory cytokines expression, promoted the proliferation of renal tissue cells, and inhibited renal cell apoptosis in vivo. In addition, NEX enhanced hucMSC-sEVs uptake by NRK52E cells, but inhibited its uptake by RAW264.7 cells. Moreover, administration of NEX reduced cellular oxidative stress and promoted proliferation of NRK52E cells treated with cisplatin in vitro. In summary, our findings indicate that this design of a universal approach enhances the targeting and therapeutic efficacy of hucMSC-sEVs in kidney tissue regeneration, and provides new evidence promoting its clinical application.


Mesenchymal stem cell-derived exosomal miR-27b-3p alleviates liver fibrosis via downregulating YAP/LOXL2 pathway.

  • Fang Cheng‎ et al.
  • Journal of nanobiotechnology‎
  • 2023‎

Lysyl oxidase-like 2 (LOXL2) is an extracellular copper-dependent enzyme that plays a central role in fibrosis by catalyzing the crosslinking and deposition of collagen. Therapeutic LOXL2 inhibition has been shown to suppress liver fibrosis progression and promote its reversal. This study investigates the efficacy and underlying mechanisms of human umbilical cord-derived exosomes (MSC-ex) in LOXL2 inhibition of liver fibrosis. MSC-ex, nonselective LOX inhibitor β-aminopropionitrile (BAPN), or PBS were administered into carbon tetrachloride (CCl4)-induced fibrotic livers. Serum LOXL2 and collagen crosslinking were assessed histologically and biochemically. MSC-ex's mechanisms on LOXL2 regulation were investigated in human hepatic stellate cell line LX-2. We found that systemic administration of MSC-ex significantly reduced LOXL2 expression and collagen crosslinking, delaying the progression of CCl4-induced liver fibrosis. Mechanically, RNA-sequencing and fluorescence in situ hybridization (FISH) indicated that miR-27b-3p was enriched in MSC-ex and exosomal miR-27b-3p repressed Yes-associated protein (YAP) expression by targeting its 3' untranslated region in LX-2. LOXL2 was identified as a novel downstream target gene of YAP, and YAP bound to the LOXL2 promoter to positively regulate transcription. Additionally, the miR-27b-3p inhibitor abrogated the anti-LOXL2 abilities of MSC-ex and diminished the antifibrotic efficacy. miR-27b-3p overexpression promoted MSC-ex mediated YAP/LOXL2 inhibition. Thus, MSC-ex may suppress LOXL2 expression through exosomal miR-27b-3p mediated YAP down-regulation. The findings here may improve our understanding of MSC-ex in liver fibrosis alleviation and provide new opportunities for clinical treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: