Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

PDGFB-expressing mesenchymal stem cells improve human hematopoietic stem cell engraftment in immunodeficient mice.

  • Xiuxiu Yin‎ et al.
  • Bone marrow transplantation‎
  • 2020‎

The bone marrow (BM) niche regulates multiple hematopoietic stem cell (HSC) processes. Clinical treatment for hematological malignancies by HSC transplantation often requires preconditioning via total body irradiation, which severely and irreversibly impairs the BM niche and HSC regeneration. Novel strategies are needed to enhance HSC regeneration in irradiated BM. We compared the effects of EGF, FGF2, and PDGFB on HSC regeneration using human mesenchymal stem cells (MSCs) that were transduced with these factors via lentiviral vectors. Among the above niche factors tested, MSCs transduced with PDGFB (PDGFB-MSCs) most significantly improved human HSC engraftment in immunodeficient mice. PDGFB-MSC-treated BM enhanced transplanted human HSC self-renewal in secondary transplantations more efficiently than GFP-transduced MSCs (GFP-MSCs). Gene set enrichment analysis showed increased antiapoptotic signaling in PDGFB-MSCs compared with GFP-MSCs. PDGFB-MSCs exhibited enhanced survival and expansion after transplantation, resulting in an enlarged humanized niche cell pool that provide a better humanized microenvironment to facilitate superior engraftment and proliferation of human hematopoietic cells. Our studies demonstrate the efficacy of PDGFB-MSCs in supporting human HSC engraftment.


Role of the bone marrow vascular niche in chemotherapy for MLL-AF9-induced acute myeloid leukemia.

  • Chang Xu‎ et al.
  • Blood science (Baltimore, Md.)‎
  • 2023‎

Leukemia stem cells in acute myeloid leukemia (AML) can persist within unique bone marrow niches similar to those of healthy hematopoietic stem cells and resist chemotherapy. In the context of AML, endothelial cells (ECs) are crucial components of these niches that appear to promote malignant expansion despite treatment. To better understand these interactions, we developed a real-time cell cycle-tracking mouse model of AML (Fucci-MA9) with an aim of unraveling why quiescent leukemia cells are more resistant to chemotherapy than cycling cells and proliferate during disease relapse. We found that quiescent leukemia cells were more prone to escape chemotherapy than cycling cells, leading to relapse and proliferation. Importantly, post-chemotherapy resting leukemia cells tended to localize closer to blood vessels. Mechanistically, after chemotherapy, resting leukemia cells interacted with ECs, promoting their adhesion and anti-apoptotic capacity. Further, expression analysis of ECs and leukemia cells during AML, after chemotherapy, and after relapse revealed the potential of suppressing the post-chemotherapy inflammatory response to regulate the functions of leukemia cells and ECs. These findings highlight the role of leukemia cells in evading chemotherapy by seeking refuge near blood vessels and provide important insights and directions for future AML research and treatment.


Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

  • Yan Zhang‎ et al.
  • PloS one‎
  • 2013‎

Bone marrow microenvironment (niche) plays essential roles in the fate of hematopoietic stem cells (HSCs). Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR) is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP), and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown.


Dysfunction of bone marrow vascular niche in acute graft-versus-host disease after MHC-haploidentical bone marrow transplantation.

  • Yonghua Yao‎ et al.
  • PloS one‎
  • 2014‎

Acute graft-versus-host disease (aGvHD) is the most common complication of allogeneic hematopoietic stem cell transplantation (HSCT), which is often accompanied by impaired hematopoietic reconstitution. Sinusoidal endothelial cells (SECs) constitute bone marrow (BM) vascular niche that plays an important role in supporting self-renewal capacity and maintaining the stability of HSC pool. Here we provide evidences that vascular niche is a target of aGvHD in a major histocompatibility complex (MHC)-haploidentical matched murine HSCT model. The results demonstrated that hematopoietic cells derived from GvHD mice had the capacity to reconstitute hematopoiesis in healthy recipient mice. However, hematopoietic cells from healthy donor mice failed to reconstitute hematopoiesis in GvHD recipient mice, indicating that the BM niche was impaired by aGvHD in this model. We further demonstrated that SECs were markedly reduced in the BM of aGvHD mice. High level of Fas and caspase-3 expression and high rate of apoptosis were identified in SECs, indicating that SECs were destroyed by aGvHD in this murine HSCT model. Furthermore, high Fas ligand expression on engrafted donor CD4(+), but not CD8(+) T cells, and high level MHC-II but not MHC-I expression on SECs, suggested that SECs apoptosis was mediated by CD4(+) donor T cells through the Fas/FasL pathway.


Interlukin-4 weakens resistance to stress injury and megakaryocytic differentiation of hematopoietic stem cells by inhibiting Psmd13 expression.

  • Ai Gao‎ et al.
  • Scientific reports‎
  • 2023‎

Thrombocytopenia is a major and fatal complication in patients with acute myeloid leukemia (AML), which results from disrupted megakaryopoiesis by leukemic niche and blasts. Our previous research revealed that elevated interleukin-4 (IL-4) in AML bone marrow had adverse impact on multiple stages throughout megakaryopoiesis including hematopoietic stem cells (HSCs), but the specific mechanism remains unknown. In the present study, we performed single-cell transcriptome analysis and discovered activated oxidative stress pathway and apoptosis pathway in IL-4Rαhigh versus IL-4Rαlow HSCs. IL-4 stimulation in vitro led to apoptosis of HSCs and down-regulation of megakaryocyte-associated transcription factors. Functional assays displayed higher susceptibility of IL-4Rαhigh HSCs to tunicamycin and irradiation-induced apoptosis, demonstrating their vulnerability to endoplasmic reticulum (ER) stress injury. To clarify the downstream signaling of IL-4, we analyzed the transcriptomes of HSCs from AML bone marrow and found a remarkable down-regulation of the proteasome component Psmd13, whose expression was required for megakaryocytic-erythroid development but could be inhibited by IL-4 in vitro. We knocked down Psmd13 by shRNA in HSCs, and found their repopulating capacity and megakaryocytic differentiation were severely compromised, with increased apoptosis in vivo. In summary, our study uncovered a previous unrecognized regulatory role of IL-4-Psmd13 signaling in anti-stress and megakaryocytic differentiation capability of HSCs.


Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis.

  • Zhaofeng Zheng‎ et al.
  • Cell stem cell‎
  • 2022‎

During fetal development, human hematopoietic stem cells (HSCs) colonize the bone marrow (BM), where they self-renew and sustain hematopoiesis throughout life; however, the precise timepoint at which HSCs seed the BM is unclear. We used single-cell RNA-sequencing to map the transcriptomic landscape of human fetal BM and spleen hematopoietic stem/progenitor cells (HSPCs) and their microenvironment from 10 to 14 post-conception weeks (PCWs). We further demonstrated that functional HSCs capable of reconstituting long-term multi-lineage hematopoiesis in adult NOG mice do not emerge in the BM until 12 PCWs. In contrast, functional HSCs were not detected in the spleen by 14 PCWs. By comparing the niche-HSPC interactions between BM and spleen, we identified ligand-receptor pairs likely to be involved in fetal HSC migration and maintenance. Our work paves the way for research into the mechanisms underlying HSC colonization in human fetal BM and provides invaluable resources for future studies on HSC development.


Ruxolitinib improves hematopoietic regeneration by restoring mesenchymal stromal cell function in acute graft-versus-host disease.

  • Yan Lin‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Acute graft-versus-host disease (aGVHD) is a severe complication of allogeneic hematopoietic stem cell transplantation. Hematopoietic dysfunction accompanied by severe aGVHD, which may be caused by niche impairment, is a long-standing clinical problem. However, how the bone marrow (BM) niche is damaged in aGVHD hosts is poorly defined. To comprehensively address this question, we used a haplo-MHC-matched transplantation aGVHD murine model and performed single-cell RNA-Seq of nonhematopoietic BM cells. Transcriptional analysis showed that BM mesenchymal stromal cells (BMSCs) were severely affected, with a reduction in cell ratio, abnormal metabolism, compromised differentiation potential, and defective hematopoiesis-supportive function, all of which were validated by functional assays. We found that ruxolitinib, a selective JAK1/2 inhibitor, ameliorated aGVHD-related hematopoietic dysfunction through a direct effect on recipient BMSCs, resulting in improved proliferation ability, adipogenesis/osteogenesis potential, mitochondria metabolism capacity, and crosstalk with donor-derived hematopoietic stem/progenitor cells. By inhibiting the JAK2/STAT1 pathway, ruxolitinib maintained long-term improvement of aGVHD BMSC function. Additionally, ruxolitinib pretreatment in vitro primed BMSCs to better support donor-derived hematopoiesis in vivo. These observations in the murine model were validated in patient samples. Overall, our findings suggest that ruxolitinib can directly restore BMSC function via the JAK2/STAT1 pathway and, in turn, improve the hematopoietic dysfunction caused by aGVHD.


Differentiation route determines the functional outputs of adult megakaryopoiesis.

  • Jing-Jing Li‎ et al.
  • Immunity‎
  • 2024‎

Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs. We found that megakaryocytes were produced through the two routes with comparable kinetics and quantity under homeostasis. Single-cell RNA sequencing of the fate-mapped megakaryocytes revealed that the direct and stepwise routes contributed to the niche-supporting and immune megakaryocytes, respectively, but contributed to the platelet-producing megakaryocytes together. Megakaryocytes derived from the two routes displayed different activities and were differentially regulated by chemotherapy and inflammation. Our work links differentiation route to the heterogeneity of megakaryocytes. Alternative differentiation routes result in variable combinations of functionally distinct megakaryocyte subpopulations poised for different physiological demands.


Transitional premonocytes emerge in the periphery for host defense against bacterial infections.

  • Ye Chean Teh‎ et al.
  • Science advances‎
  • 2022‎

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: