Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 259 papers

Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus.

  • Jingqiang Wang‎ et al.
  • Clinical chemistry‎
  • 2003‎

The widespread threat of severe acute respiratory syndrome (SARS) to human life has spawned challenges to develop fast and accurate analytical methods for its early diagnosis and to create a safe antiviral vaccine for preventive use. Consequently, we thoroughly investigated the immunoreactivities with patient sera of a series of synthesized peptides from SARS-coronavirus structural proteins.


The YH database: the first Asian diploid genome database.

  • Guoqing Li‎ et al.
  • Nucleic acids research‎
  • 2009‎

The YH database is a server that allows the user to easily browse and download data from the first Asian diploid genome. The aim of this platform is to facilitate the study of this Asian genome and to enable improved organization and presentation large-scale personal genome data. Powered by GBrowse, we illustrate here the genome sequences, SNPs, and sequencing reads in the MapView. The relationships between phenotype and genotype can be searched by location, dbSNP ID, HGMD ID, gene symbol and disease name. A BLAST web service is also provided for the purpose of aligning query sequence against YH genome consensus. The YH database is currently one of the three personal genome database, organizing the original data and analysis results in a user-friendly interface, which is an endeavor to achieve fundamental goals for establishing personal medicine. The database is available at http://yh.genomics.org.cn.


Genome-wide identification of RNA editing in hepatocellular carcinoma.

  • Lin Kang‎ et al.
  • Genomics‎
  • 2015‎

We did whole-transcriptome sequencing and whole-genome sequencing on nine pairs of Hepatocellular carcinoma (HCC) tumors and matched adjacent tissues to identify RNA editing events. We identified mean 26,982 editing sites with mean 89.5% canonical A→G edits in each sample using an improved bioinformatics pipeline. The editing rate was significantly higher in tumors than adjacent normal tissues. Comparing the difference between tumor and normal tissues of each patient, we found 7 non-synonymous tissue specific editing events including 4 tumor-specific edits and 3 normal-specific edits in the coding region, as well as 292 edits varying in editing degree. The significant expression changes of 150 genes associated with RNA editing were found in tumors, with 3 of the 4 most significant genes being cancer related. Our results show that editing might be related to higher gene expression. These findings indicate that RNA editing modification may play an important role in the development of HCC.


Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.

  • Cai Li‎ et al.
  • GigaScience‎
  • 2014‎

Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri].


Novel Y-chromosomal microdeletions associated with non-obstructive azoospermia uncovered by high throughput sequencing of sequence-tagged sites (STSs).

  • Xiao Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Y-chromosomal microdeletion (YCM) serves as an important genetic factor in non-obstructive azoospermia (NOA). Multiplex polymerase chain reaction (PCR) is routinely used to detect YCMs by tracing sequence-tagged sites (STSs) in the Y chromosome. Here we introduce a novel methodology in which we sequence 1,787 (post-filtering) STSs distributed across the entire male-specific Y chromosome (MSY) in parallel to uncover known and novel YCMs. We validated this approach with 766 Chinese men with NOA and 683 ethnically matched healthy individuals and detected 481 and 98 STSs that were deleted in the NOA and control group, representing a substantial portion of novel YCMs which significantly influenced the functions of spermatogenic genes. The NOA patients tended to carry more and rarer deletions that were enriched in nearby intragenic regions. Haplogroup O2* was revealed to be a protective lineage for NOA, in which the enrichment of b1/b3 deletion in haplogroup C was also observed. In summary, our work provides a new high-resolution portrait of deletions in the Y chromosome.


High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus.

  • Wenming Zheng‎ et al.
  • Nature communications‎
  • 2013‎

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat. Here we report a 110-Mb draft sequence of Pst isolate CY32, obtained using a 'fosmid-to-fosmid' strategy, to better understand its race evolution and pathogenesis. The Pst genome is highly heterozygous and contains 25,288 protein-coding genes. Compared with non-obligate fungal pathogens, Pst has a more diverse gene composition and more genes encoding secreted proteins. Re-sequencing analysis indicates significant genetic variation among six isolates collected from different continents. Approximately 35% of SNPs are in the coding sequence regions, and half of them are non-synonymous. High genetic diversity in Pst suggests that sexual reproduction has an important role in the origin of different regional races. Our results show the effectiveness of the 'fosmid-to-fosmid' strategy for sequencing dikaryotic genomes and the feasibility of genome analysis to understand race evolution in Pst and other obligate pathogens.


Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing.

  • Yong Hou‎ et al.
  • GigaScience‎
  • 2015‎

Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleotide-primed PCR (DOP-PCR) and multiple annealing and looping-based amplification cycles (MALBAC). However, a comprehensive comparison of variations detection performance between these WGA methods has not yet been performed.


A novel homozygous PTH1R variant identified through whole-exome sequencing further expands the clinical spectrum of primary failure of tooth eruption in a consanguineous Saudi family.

  • Musharraf Jelani‎ et al.
  • Archives of oral biology‎
  • 2016‎

The present study aimed to identify the genetic cause of non-syndromic primary failure of tooth eruption in a five-generation consanguineous Saudi family using whole-exome sequencing (WES) analysis.


Genetic basis of Y-linked hearing impairment.

  • Qiuju Wang‎ et al.
  • American journal of human genetics‎
  • 2013‎

A single Mendelian trait has been mapped to the human Y chromosome: Y-linked hearing impairment. The molecular basis of this disorder is unknown. Here, we report the detailed characterization of the DFNY1 Y chromosome and its comparison with a closely related Y chromosome from an unaffected branch of the family. The DFNY1 chromosome carries a complex rearrangement, including duplication of several noncontiguous segments of the Y chromosome and insertion of ∼160 kb of DNA from chromosome 1, in the pericentric region of Yp. This segment of chromosome 1 is derived entirely from within a known hearing impairment locus, DFNA49. We suggest that a third copy of one or more genes from the shared segment of chromosome 1 might be responsible for the hearing-loss phenotype.


Transcriptome and network changes in climbers at extreme altitudes.

  • Fang Chen‎ et al.
  • PloS one‎
  • 2012‎

Extreme altitude can induce a range of cellular and systemic responses. Although it is known that hypoxia underlies the major changes and that the physiological responses include hemodynamic changes and erythropoiesis, the molecular mechanisms and signaling pathways mediating such changes are largely unknown. To obtain a more complete picture of the transcriptional regulatory landscape and networks involved in extreme altitude response, we followed four climbers on an expedition up Mount Xixiabangma (8,012 m), and collected blood samples at four stages during the climb for mRNA and miRNA expression assays. By analyzing dynamic changes of gene networks in response to extreme altitudes, we uncovered a highly modular network with 7 modules of various functions that changed in response to extreme altitudes. The erythrocyte differentiation module is the most prominently up-regulated, reflecting increased erythrocyte differentiation from hematopoietic stem cells, probably at the expense of differentiation into other cell lineages. These changes are accompanied by coordinated down-regulation of general translation. Network topology and flow analyses also uncovered regulators known to modulate hypoxia responses and erythrocyte development, as well as unknown regulators, such as the OCT4 gene, an important regulator in stem cells and assumed to only function in stem cells. We predicted computationally and validated experimentally that increased OCT4 expression at extreme altitude can directly elevate the expression of hemoglobin genes. Our approach established a new framework for analyzing the transcriptional regulatory network from a very limited number of samples.


Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression.

  • Linzhao Cheng‎ et al.
  • Cell stem cell‎
  • 2012‎

The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1,058-1,808 heterozygous single-nucleotide variants (SNVs), but no copy-number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction.


The M protein of SARS-CoV: basic structural and immunological properties.

  • Yongwu Hu‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2003‎

We studied structural and immunological properties of the SARS-CoV M (membrane) protein, based on comparative analyses of sequence features, phylogenetic investigation, and experimental results. The M protein is predicted to contain a triple-spanning transmembrane (TM) region, a single N-glycosylation site near its N-terminus that is in the exterior of the virion, and a long C-terminal region in the interior. The M protein harbors a higher substitution rate (0.6% correlated to its size) among viral open reading frames (ORFs) from published data. The four substitutions detected in the M protein, which cause non-synonymous changes, can be classified into three types. One of them results in changes of pI (isoelectric point) and charge, affecting antigenicity. The second changes hydrophobicity of the TM region, and the third one relates to hydrophilicity of the interior structure. Phylogenetic tree building based on the variations of the M protein appears to support the non-human origin of SARS-CoV. To investigate its immunogenicity, we synthesized eight oligopeptides covering 69.2% of the entire ORF and screened them by using ELISA (enzyme-linked immunosorbent assay) with sera from SARS patients. The results confirmed our predictions on antigenic sites.


Complete genome sequences of the SARS-CoV: the BJ Group (Isolates BJ01-BJ04).

  • Shengli Bi‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2003‎

Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.


HLA-A gene polymorphism defined by high-resolution sequence-based typing in 161 Northern Chinese Han people.

  • Chunxia Yan‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2003‎

Human leukocyte antigen (HLA) system is the most polymorphic region known in the human genome. In the present study, we analyzed for the first time the HLA-A gene polymorphisms defined by the high-resolution typing methods-sequence-based typing (SBT) in 161 Northern Chinese Han people. A total of 74 different HLA-A gene types and 36 alleles were detected. The most frequent alleles were A*110101 (GF=0.2360), A*24020101 (GF=0.1646), and A*020101 (GF=0.1553); followed by A*3303 (GF=0.1180), A*3001 (GF=0.0590), and A*310102 (GF=0.0404). The frequencies of following alleles, A*0203, A*0205, A*0206, A*0207, A*030101, A*2423, A*2601, A*3201, and A*3301, are all higher than 0.0093. The homozygous alleles include A*020101, A*110101, A*24020101 and A*310102. Heterozygosity (H), polymorphism information content (PIC), discrimination power (DP) and probability of paternity exclusion (PPE) of HLA-A in the samples were calculated and their values were 0.8705, 0.8491, 0.6014, and 0.9475, respectively. These results by SBT analysis of HLA-A polymorphism in Northern Chinese Han population, especially the allele subtypes character, will be of great interest for clinical transplantation, disease-associated study and forensic identification. Implementation of high-resolution typing methods allows a significantly wider spectrum of HLA variation including rare alleles. This spectrum will further be extensively utilized in many fields.


Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing.

  • Rasmus Wernersson‎ et al.
  • BMC genomics‎
  • 2005‎

Comparative whole genome analysis of Mammalia can benefit from the addition of more species. The pig is an obvious choice due to its economic and medical importance as well as its evolutionary position in the artiodactyls.


Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics.

  • Yuling Lin‎ et al.
  • GigaScience‎
  • 2017‎

Longan (Dimocarpus longan Lour.), an important subtropical fruit in the family Sapindaceae, is grown in more than 10 countries. Longan is an edible drupe fruit and a source of traditional medicine with polyphenol-rich traits. Tree size, alternate bearing, and witches' broom disease still pose serious problems. To gain insights into the genomic basis of longan traits, a draft genome sequence was assembled. The draft genome (about 471.88 Mb) of a Chinese longan cultivar, "Honghezi," was estimated to contain 31 007 genes and 261.88 Mb of repetitive sequences. No recent whole-genome-wide duplication event was detected in the genome. Whole-genome resequencing and analysis of 13 cultivated D. longan accessions revealed the extent of genetic diversity. Comparative transcriptome studies combined with genome-wide analysis revealed polyphenol-rich and pathogen resistance characteristics. Genes involved in secondary metabolism, especially those from significantly expanded (DHS, SDH, F3΄H, ANR, and UFGT) and contracted (PAL, CHS, and F3΄5΄H) gene families with tissue-specific expression, may be important contributors to the high accumulation levels of polyphenolic compounds observed in longan fruit. The high number of genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) and leucine-rich repeat receptor-like kinase proteins, as well as the recent expansion and contraction of the NBS-LRR family, suggested a genomic basis for resistance to insects, fungus, and bacteria in this fruit tree. These data provide insights into the evolution and diversity of the longan genome. The comparative genomic and transcriptome analyses provided information about longan-specific traits, particularly genes involved in its polyphenol-rich and pathogen resistance characteristics.


An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos.

  • Longqi Liu‎ et al.
  • Nature communications‎
  • 2019‎

Human pre-implantation embryonic development involves extensive changes in chromatin structure and transcriptional activity. Here, we report on LiCAT-seq, a technique that enables simultaneous profiling of chromatin accessibility and gene expression with ultra-low input of cells, and map the chromatin accessibility and transcriptome landscapes for human pre-implantation embryos. We observed global difference in chromatin accessibility between sperm and all stages of embryos, finding that the accessible regions in sperm tend to occur in gene-poor genomic regions. Integrative analyses between the two datasets reveals strong association between the establishment of accessible chromatin and embryonic genome activation (EGA), and uncovers transcription factors and endogenous retrovirus (ERVs) specific to EGA. In particular, a large proportion of the early activated genes and ERVs are bound by DUX4 and become accessible as early as the 2- to 4-cell stages. Our results thus offer mechanistic insights into the molecular events inherent to human pre-implantation development.


Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity.

  • Longqi Liu‎ et al.
  • Nature communications‎
  • 2019‎

Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a technique for simultaneously assaying chromatin accessibility and the transcriptome within the same single cell. We show that the combined single cell signatures enable accurate construction of regulatory relationships between cis-regulatory elements and the target genes at single-cell resolution, providing a new dimension of features that helps direct discovery of regulatory patterns specific to distinct cell identities. Moreover, we generate the first single cell integrated map of chromatin accessibility and transcriptome in early embryos and demonstrate the robustness of scCAT-seq in the precise dissection of master transcription factors in cells of distinct states. The ability to obtain these two layers of omics data will help provide more accurate definitions of "single cell state" and enable the deconvolution of regulatory heterogeneity from complex cell populations.


The molecular landscape of synchronous colorectal cancer reveals genetic heterogeneity.

  • Xiangfeng Wang‎ et al.
  • Carcinogenesis‎
  • 2018‎

Synchronous colorectal cancers (syCRCs), which present two or more lesions at diagnosis, are rare and pose a great challenge for clinical management. Although some predisposing factors associated with syCRCs have been studied with limited accession, the full repertoire of genomic events among the lesions within an individual and the causes of syCRCs remain unclear. We performed whole-exome sequencing of 40 surgical tumour samples of paired lesions from 20 patients to characterize the genetic alterations. Lesions from same patient showed distinct landscapes of somatic aberrations and shared few mutations, which suggests that they originate and develop independently, although they shared the similar genetic background. Canonical genes, such as APC, KRAS, TP53 and PIK3CA, were frequently mutated in the syCRCs, and most of them show different mutation profile compared with solitary colorectal cancer. We identified a recurrent somatic alteration (K15fs) in RPL22 in 25% of the syCRCs. Functional analysis indicated that mutated RPL22 may suppress cell apoptosis and promote the epithelial-mesenchymal transition (EMT). Potential drug targets were identified in several signalling pathways, and they present great discrepancy between lesions from the same patient. Our data show that the syCRCs within the same patient present great genetic heterogeneity, and they may be driven by distinct molecular events and develop independently. The discrepancy of potential drug targets and mutation burden in lesions from one patient provides valuable information in clinical management for patients with syCRCs.


Characterization of viral RNA splicing using whole-transcriptome datasets from host species.

  • Chengran Zhou‎ et al.
  • Scientific reports‎
  • 2018‎

RNA alternative splicing (AS) is an important post-transcriptional mechanism enabling single genes to produce multiple proteins. It has been well demonstrated that viruses deploy host AS machinery for viral protein productions. However, knowledge on viral AS is limited to a few disease-causing viruses in model species. Here we report a novel approach to characterizing viral AS using whole transcriptome dataset from host species. Two insect transcriptomes (Acheta domesticus and Planococcus citri) generated in the 1,000 Insect Transcriptome Evolution (1KITE) project were used as a proof of concept using the new pipeline. Two closely related densoviruses (Acheta domesticus densovirus, AdDNV, and Planococcus citri densovirus, PcDNV, Ambidensovirus, Densovirinae, Parvoviridae) were detected and analyzed for AS patterns. The results suggested that although the two viruses shared major AS features, dramatic AS divergences were observed. Detailed analysis of the splicing junctions showed clusters of AS events occurred in two regions of the virus genome, demonstrating that transcriptome analysis could gain valuable insights into viral splicing. When applied to large-scale transcriptomics projects with diverse taxonomic sampling, our new method is expected to rapidly expand our knowledge on RNA splicing mechanisms for a wide range of viruses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: