Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 79 papers

USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase.

  • Yihui Fan‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Lys63-linked polyubiquitination of RIG-I is essential in antiviral immune defense, yet the molecular mechanism that negatively regulates this critical step is poorly understood. Here, we report that USP21 acts as a novel negative regulator in antiviral responses through its ability to bind to and deubiquitinate RIG-I. Overexpression of USP21 inhibited RNA virus-induced RIG-I polyubiquitination and RIG-I-mediated interferon (IFN) signaling, whereas deletion of USP21 resulted in elevated RIG-I polyubiquitination, IRF3 phosphorylation, IFN-α/β production, and antiviral responses in MEFs in response to RNA virus infection. USP21 also restricted antiviral responses in peritoneal macrophages (PMs) and bone marrow-derived dendritic cells (BMDCs). USP21-deficient mice spontaneously developed splenomegaly and were more resistant to VSV infection with elevated production of IFNs. Chimeric mice with USP21-deficient hematopoietic cells developed virus-induced splenomegaly and were more resistant to VSV infection. Functional comparison of three deubiquitinases (USP21, A20, and CYLD) demonstrated that USP21 acts as a bona fide RIG-I deubiquitinase to down-regulate antiviral response independent of the A20 ubiquitin-editing complex. Our studies identify a previously unrecognized role for USP21 in the negative regulation of antiviral response through deubiquitinating RIG-I.


CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc.

  • Hu Pu‎ et al.
  • Oncotarget‎
  • 2015‎

Cancer up-regulated drug resistant (CUDR) is a novel non-coding RNA gene. Herein, we demonstrate excessive CUDR cooperates with excessive CyclinD1 or PTEN depletion to accelerate liver cancer stem cells growth and liver stem cell malignant transformation in vitro and in vivo. Mechanistically, we reveal the decrease of PTEN in cells may lead to increase binding capacity of CUDR to CyclinD1. Therefore, CUDR-CyclinD1 complex loads onto the long noncoding RNA H19 promoter region that may lead to reduce the DNA methylation on H19 promoter region and then to enhance the H19 expression. Strikingly, the overexpression of H19 increases the binding of TERT to TERC and reduces the interplay between TERT with TERRA, thus enhancing the cell telomerase activity and extending the telomere length. On the other hand, insulator CTCF recruits the CUDR-CyclinD1 complx to form the composite CUDR-CyclinD1-insulator CTCF complex which occupancied on the C-myc gene promoter region, increasing the outcome of oncogene C-myc. Ultimately, excessive TERT and C-myc lead to liver cancer stem cell and hepatocyte-like stem cell malignant proliferation. To understand the novel functions of long noncoding RNA CUDR will help in the development of new liver cancer therapeutic and diagnostic approaches.


Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma.

  • Gangadhara R Sareddy‎ et al.
  • Scientific reports‎
  • 2016‎

Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM.


Detection and sequencing of porcine circovirus 3 in commercially sourced laboratory mice.

  • Shouchuan Jiang‎ et al.
  • Veterinary medicine and science‎
  • 2019‎

Porcine circovirus 3 (PCV3), a recently discovered virus, has spread widely in pigs throughout the world. In order to investigate the possibility of mice used to study the infection of PCV3, commercially sourced Balb/C and ICR mice were screened for PCV3 infection. Blood samples were collected from 20 mice (10 each of Balb/c and ICR), DNA was extracted, and subjected to PCR with PCV3 specific primers. We found all 20 serum samples tested positive for PCV3 DNA. From four mice, the complete genomes of PCV3 were amplified and sequenced, and a phylogenetic tree was constructed. The results showed that the amplified genome was 2000 bp, and sequence comparison showed that the homology of the complete genome and ORF2 gene with those of porcine PCV3 are 97.9%-98.8% and 96.9%-98.3%, respectively. Amino acids alignment results showed that the Cap protein of the mouse PCV3 isolates share 90.7%-96.3% amino acid homology with that of the references strains derived from pigs. Phylogenetic analysis based on ORF2 sequences showed that all PCV3 strains clustered together and were clearly separate from other circovirus species. We detected PCV3 in experimental mice in China for the first time, which is an opportunity to use mice to study the infection of PCV3 and a potential hazard to swine industry.


Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a.

  • Xiaoru Xin‎ et al.
  • Molecular cancer‎
  • 2018‎

Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear.


Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway.

  • Zhixia Qiu‎ et al.
  • Journal of ethnopharmacology‎
  • 2020‎

Polycystic ovary syndrome (PCOS) is a complex gynecological endocrine disease commonly occurred in women of childbearing age. The main hallmark of PCOS includes elevated androgen production and insulin resistance (IR). Liuwei Dihuang Pills (LWDH Pills), a commonly prescribed traditional Chinese medicine (TCM) is widely used as a tonic prescription to treat diabetes, female menopause syndrome and other symptoms with'Kidney-Yin' deficiency. It has been reported the effects LWDH pills on PI3K/Akt signaling pathway in T2DM treatment. Recent studies have also indicated that the treatment of menopausal syndrome may be associated with the ovarian sexual hormone levels regulated by LWDH pills to alleviate female infertility. However, its potential benefits on PCOS have not been fully elucidated.


Genome-wide identification and role of MKK and MPK gene families in clubroot resistance of Brassica rapa.

  • Yinglan Piao‎ et al.
  • PloS one‎
  • 2018‎

Mitogen-activated protein kinase (MAPK or MPK) cascades play key roles in responses to various biotic stresses, as well as in plant growth and development. However, the responses of MPK and MPK kinase (MKK) in Chinese cabbage (Brassica rapa ssp. pekinensis) to Plasmodiophora brassicae, a causal agent of clubroot disease in Brassica crops, are still not clear. In the present study, a total of 11 B. rapa MKK (BraMKK) and 30 BraMPK genes were identified and unevenly distributed in 6 and 10 chromosomes, respectively. The synteny analysis indicated that these genes experienced whole-genome triplication and segmental and tandem duplication during or after the divergence of B. rapa, accompanied by the loss of three MKK and two MPK orthologs of Arabidopsis. The BraMKK and BraMPK genes were classified into four groups with similar intron/exon structures and conserved motifs in each group. A quantitative PCR analysis showed that the majority of BraMKK and BraMPK genes were natively expressed in roots, hypocotyls, and leaves, whereas 5 BraMKK and 16 BraMPK genes up-regulated in the roots upon P. brassicae infection. Additionally, these 5 BraMKK and 16 BraMPK genes exhibited a significantly different expression pattern between a pair of clubroot-resistant/susceptible near-isogenic lines (NILs). Furthermore, the possible modules of MKK-MPK involved in B. rapa-P. brassicae interaction are also discussed. The present study will provide functional clues for further characterization of the MAPK cascades in B. rapa.


HistoneH3 demethylase JMJD2A promotes growth of liver cancer cells through up-regulating miR372.

  • Jiahui An‎ et al.
  • Oncotarget‎
  • 2017‎

Changes in histone lysine methylation status have been observed during cancer formation. JMJD2A protein is a demethylase that is overexpressed in several tumors. Herein, our results demonstrate that JMJD2A accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, JMJD2A promoted the expression and mature of pre-miR372 epigenetically. Notably, miR372 blocks the editing of 13th exon-introns-14th exon and forms a novel transcript( JMJD2AΔ) of JMJD2A. In particular, JMJD2A inhibited P21(WAF1/Cip1) expression by decreasing H3K9me3 dependent on JMJD2AΔ. Thereby, JMJD2A could enhance Pim1 transcription by suppressing P21(WAF1/Cip1). Furthermore, through increasing the expression of Pim1, JMJD2A could facilitate the interaction among pRB, CDK2 and CyclinE which prompts the transcription and translation of oncogenic C-myc. Strikingly, JMJD2A may trigger the demethylation of Pim1. On the other hand, Pim1 knockdown and P21(WAF1/Cip1) overexpression fully abrogated the oncogenic function of JMJD2A. Our observations suggest that JMJD2A promotes liver cancer cell cycle progress through JMJD2A-miR372-JMJD2AΔ-P21WAF1/Cip1-Pim1-pRB-CDK2-CyclinE-C-myc axis. This study elucidates a novel mechanism for JMJD2A in liver cancer cells and suggests that JMJD2A can be used as a novel therapeutic targets of liver cancer.


miR24-2 Promotes Malignant Progression of Human Liver Cancer Stem Cells by Enhancing Tyrosine Kinase Src Epigenetically.

  • Liyan Wang‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2020‎

MicroRNA24-2 (miR24-2) is associated with human tumorigenesis; however, its molecular mechanisms are poorly understood. Herein, our findings demonstrate that miR24-2 promotes the proliferation ability in vitro and the tumorigenic ability in vivo in human liver cancer stem cells (hLCSCs). Mechanically, the miR24-2 targets for 3' UTR (2,627-2,648) of protein arginine methyltransferase 7 (PRMT7) inhibit the translational ability of prmt7 gene. Moreover, miR24-2 inhibits the di-/tri-methylation of histone H4 arginine 3 by reducing PRMT7 and then promotes the expression of Nanog via long noncoding RNA HULC. Notably, miR24-2 inhibits histone deacetylase HDAC3 through miR675, which promotes the acetylation of histone H4 at lysine 16. Subsequently, miR24-2 enhances the interaction between LC3 and ATG4 dependent on PI3K and triggers cellular autophagy. Strikingly, miR24-2 inhibits the degradation of pyruvate kinase M1 via autophagosome-P62 in hLCSCs. Furthermore, miR24-2 enhances the activity of Src by promoting the binding of PKM1 to the Src promoter regions in hLCSCs. In particular, our results also indicate that src gene determines the oncogenic functions of miR24-2. These results provided a valuable theoretical basis for the discovery of liver cancer therapeutic targets and diagnosis markers based on miR24-2.


miR24-2 accelerates progression of liver cancer cells by activating Pim1 through tri-methylation of Histone H3 on the ninth lysine.

  • Yuxin Yang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Several microRNAs are associated with carcinogenesis and tumour progression. Herein, our observations suggest both miR24-2 and Pim1 are up-regulated in human liver cancers, and miR24-2 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR24-2 increases the expression of N6-adenosine-methyltransferase METTL3 and thereafter promotes the expression of miR6079 via RNA methylation modification. Furthermore, miR6079 targets JMJD2A and then increased the tri-methylation of histone H3 on the ninth lysine (H3K9me3). Therefore, miR24-2 inhibits JMJD2A by increasing miR6079 and then increases H3K9me3. Strikingly, miR24-2 increases the expression of Pim1 dependent on H3K9me3 and METTL3. Notably, our findings suggest that miR24-2 alters several related genes (pHistone H3, SUZ12, SUV39H1, Nanog, MEKK4, pTyr) and accelerates progression of liver cancer cells through Pim1 activation. In particular, Pim1 is required for the oncogenic action of miR24-2 in liver cancer. This study elucidates a novel mechanism for miR24-2 in liver cancer and suggests that miR24-2 may be used as novel therapeutic targets of liver cancer.


Neonatal overfeeding induced glucocorticoid overexposure accelerates hepatic lipogenesis in male rats.

  • Fan Yang‎ et al.
  • Nutrition & metabolism‎
  • 2018‎

Postnatal overfeeding activates tissue glucocorticoid (GC) activity by up-regulating 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and increasing sensitivity to high-fat (HF) diet-induced non-alcoholic fatty liver disease (NAFLD). The present study aimed to evaluate the effects of postnatal overfeeding on GC regulation and lipogenesis in the liver and to observe the impact of GC on hepatocyte lipid metabolism.


Inflammatory-Related P62 Triggers Malignant Transformation of Mesenchymal Stem Cells through the Cascade of CUDR-CTCF-IGFII-RAS Signaling.

  • Xiaoru Xin‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2018‎

Inflammatory and autophagy-related gene P62 is highly expressed in most human tumor tissues. Herein, we demonstrate that P62 promotes human mesenchymal stem cells' malignant transformation via the cascade of P62-tumor necrosis factor alpha (TNF-α)-CUDR-CTCF-insulin growth factor II (IGFII)-H-Ras signaling. Mechanistically, we reveal P62 enhances IGFII transcriptional activity through forming IGFII promoter-enhancer chromatin loop and increasing METTL3 occupancy on IGFII 3' UTR and enhances H-Ras overexpression by harboring inflammation-related factors, e.g., TNFR1, CLYD, EGR1, NFκB, TLR4, and PPARγ. Furthermore, the P62 cooperates with TNF-α to promote malignant transformation of mesenchymal stem cells. These findings, for the first time, provide insight into the positive role that P62 plays in malignant transformation of mesenchymal stem cells and reveal a novel link between P62 and the inflammation factors in mesenchymal stem cells.


Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN.

  • Qidi Zheng‎ et al.
  • Cell death & disease‎
  • 2018‎

Maternally expressed gene 3 (MEG3) encodes an lncRNA which is suggested to function as a tumor suppressor and has been showed to involve in a variety of cancers. Herein, our findings demonstrate that MEG3 inhibits the malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, MEG3 promotes the expression and maturition of miR122 which targets PKM2. Therefore, MEG3 decreases the expression and nuclear location of PKM2 dependent on miR122. Furthermore, MEG3 also inhibits CyclinD1 and C-Myc via PKM2 in liver cancer cells. On the other hand, MEG3 promotes β-catenin degradation through ubiquitin-proteasome system dependent on PTEN. Strikingly, MEG3 inhibits β-catenin activity through PKM2 reduction and PTEN increase. Significantly, we also found that excessive β-catenin abrogated the effect of MEG3 in liver cancer. In conclusion, our study for the first time demonstrates that MEG3 acts as a tumor suppressor by negatively regulating the activity of the PKM2 and β-catenin signaling pathway in hepatocarcinogenesis and could provide potential therapeutic targets for the treatment of liver cancer.


n-3 PUFAs protect against adiposity and fatty liver by promoting browning in postnatally overfed male rats: a role for NRG4.

  • Fan Yang‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2021‎

Early-life nutrition plays an important role in regulating adult metabolism. This study evaluated the effects of early nutrition during the suckling and postweaning periods on expression of the adipocytokine Neuregulin 4 (Nrg4) and its relationship with nonalcoholic fatty liver disease (NAFLD) in adulthood. In vivo, male rats were adjusted to litter sizes of three (small litter, SL) or ten (normal litter, NL) on postnatal day 3. Pups were fed control chow (NL and SL groups) or a high-fat diet (NL-HF and SL-HF groups), and SL pups specifically were fed a fish oil diet rich in n-3 polyunsaturated fatty acids (n-3 PUFAs) (SL-FO group), from postnatal weeks 3 to 13. The results demonstrated that postnatal overnutrition increased weight, hepatic de novo lipogenesis (DNL) gene expression and NAFLD and decreased body temperature and Nrg4, Ucp1 and Pgc1a mRNA expression in adipose tissues in SL, SL-HF and NL-HF rats compared to NL rats in adulthood. The opposite trends were observed in SL-FO rats. Moreover, in vitro, recombinant NRG4 protein reduced lipid accumulation by inhibiting DNL gene expression in fatty HepG2 cells stimulated with sodium oleate. In HPAs, eicosapentaenoic acid (EPA) treatment elevated NRG4 production and caused adipocyte browning, and these effects were abrogated by PPARG antagonism. In conclusion, a postweaning n-3 PUFA diet enhanced Nrg4 expression in adipose tissues, associated with attenuation of NAFLD induced by SL rearing. Additionally, external NRG4 reduced lipogenesis in steatotic hepatocytes. Thus, white adipose tissue browning induced by n-3 PUFAs may promote NRG4 production through the PPARG pathway.


Serum cytokine patterns are modulated in infants fed formula with probiotics or milk fat globule membranes: A randomized controlled trial.

  • Xiaonan Li‎ et al.
  • PloS one‎
  • 2021‎

Proteins and lipids of milk fat globule membrane (MFGM) and probiotics are immunomodulatory. We hypothesized that Lactobacillus paracasei ssp. paracasei strain F19 (F19) would augment vaccine antibody and T helper 1 type immune responses whereas MFGM would produce an immune response closer to that of breastfed (BF) infants.


Dietary curcumin supplementation promotes browning and energy expenditure in postnatal overfed rats.

  • Xiaolei Zhu‎ et al.
  • Nutrition & metabolism‎
  • 2021‎

Early postnatal overfeeding could result in metabolic imprinting that decreases energy expenditure following white adipose tissue (WAT) gain throughout life. This research investigated whether curcumin (CUR) supplementation could promote WAT browning and activate thermogenesis in postnatal overfed rats.


Characterization and protective activity of monoclonal antibodies directed against Fe (3+) ABC transporter substrate-binding protein of Glaesserella parasuis.

  • Kexin Zhu‎ et al.
  • Veterinary research‎
  • 2021‎

Glässer's disease is caused by the agent Glaesserella parasuis and is difficult to prevent and control. Candidate screening for subunit vaccines contributes to the prevention of this disease. Therefore, in this study, the inactivated G. parasuis reference serovar 5 strain (G. parasuis-5) was used to generate specific monoclonal antibodies (mAbs) to screen subunit vaccine candidates. Six mAbs (1A12, 3E3, 4C6, 2D1, 3E6, and 4B2) were screened, and they all reacted with the G. parasuis serovar 5 strain according to laser confocal microscopy and flow cytometry (FCM). Indirect enzyme-linked immunosorbent assay (ELISA) showed that one mAb 2D1, can react with all 15 reference serovars of G. parasuis. Protein mass spectrometry and Western blot analysis demonstrated that mAb 2D1 specifically reacts with Fe (3+) ABC transporter substrate-binding protein. A complement killing assay found that the colony numbers of bacteria were significantly reduced in the G. parasuis-5 group incubated with mAb 2D1 (p < 0.01) in comparison with the control group. Opsonophagocytic assays demonstrated that mAb 2D1 significantly enhanced the phagocytosis of 3D4/21 cells by G. parasuis (p < 0.05). RAW264.7 cells with stronger phagocytic ability were also used for the opsonophagocytic assay, and the difference was highly significant (p < 0.01). Passive immunization of mice revealed that mAb 2D1 can eliminate the bacteria in the blood and provide protection against G. parasuis-5. Our study found one mAb that can be used to prevent and control G. parasuis infection in vivo and in vitro, which may suggest that Fe (3+) ABC transporter substrate-binding protein is an immunodominant antigen and a promising candidate for subunit vaccine development.


Genome-Wide Identification and Characterization of the Trehalose-6-Phosphate Synthetase Gene Family in Chinese Cabbage (Brassica rapa) and Plasmodiophora brassicae during Their Interaction.

  • Liyan Kong‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Trehalose is a nonreducing disaccharide that is widely distributed in various organisms. Trehalose-6-phosphate synthase (TPS) is a critical enzyme responsible for the biosynthesis of trehalose, which serves important functions in growth and development, defense, and stress resistance. Although previous studies have found that the clubroot pathogen Plasmodiophora brassicae can lead to the accumulation of trehalose in infected Arabidopsis organs, it has been proposed that much of the accumulated trehalose is derived from the pathogen. At present, there is very little evidence to verify this view. In this study, a comprehensive analysis of the TPS gene family was conducted in Brassica rapa and Plasmodiophora brassicae. A total of 14 Brassica rapa TPS genes (BrTPSs) and 3 P. brassicae TPS genes (PbTPSs) were identified, and the evolutionary characteristics, functional classification, and expression patterns were analyzed. Fourteen BrTPS genes were classified into two distinct classes according to phylogeny and gene structure. Three PbTPSs showed no significant differences in gene structure and protein conserved motifs. However, evolutionary analysis showed that the PbTPS2 gene failed to cluster with PbTPS1 and PbTPS3. Furthermore, cis-acting elements related to growth and development, defense and stress responsiveness, and hormone responsiveness were predicted in the promoter region of the BrTPS genes. Expression analysis of most BrTPS genes at five stages after P. brassicae interaction found no significant induction. Instead, the expression of the PbTPS genes of P. brassicae was upregulated, which was consistent with the period of trehalose accumulation. This study deepens our understanding of the function and evolution of BrTPSs and PbTPSs. Simultaneously, clarifying the biosynthesis of trehalose in the interaction between Brassica rapa and P. brassicae is also of great significance.


Talaromyces marneffei infection and complicate manifestation of respiratory system in HIV-negative children.

  • Qin Yang‎ et al.
  • BMC pulmonary medicine‎
  • 2023‎

Respiratory symptoms are the earliest clinical manifestation of Talaromyces marneffei (TM) infection. In this study, we aimed to improve the early identification of TM infection in human immunodeficiency virus (HIV)-negative children with respiratory symptoms as the first manifestation, analyze the risk factors, and provide evidence for diagnosis and treatment.


Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

  • Parameswari Paul‎ et al.
  • PloS one‎
  • 2016‎

Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: