Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 435 papers

[Effects of magnetic fluid hyperthermia induced by an alternative magnetic field on human carcinoma A549 cell in vitro].

  • Guoqing Wang‎ et al.
  • Zhongguo fei ai za zhi = Chinese journal of lung cancer‎
  • 2011‎

Magnetic fluid hyperthermia (MFH) is a method of heat therapy using nanometer techniques and hyperthermia. It has the advantage of high specificity of targeting. The aim of this study is to detect the effects of MFH induced by an alternating magnetic field on human being carcinoma A549 cells in vitro.


A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes.

  • Junmei Cairns‎ et al.
  • Scientific reports‎
  • 2016‎

To better address the problem of drug resistance during cancer chemotherapy and explore the possibility of manipulating drug response phenotypes, we developed a network-based phenotype mapping approach (P-Map) to identify gene candidates that upon perturbed can alter sensitivity to drugs. We used basal transcriptomics data from a panel of human lymphoblastoid cell lines (LCL) to infer drug response networks (DRNs) that are responsible for conferring response phenotypes for anthracycline and taxane, two common anticancer agents use in clinics. We further tested selected gene candidates that interact with phenotypic differentially expressed genes (PDEGs), which are up-regulated genes in LCL for a given class of drug response phenotype in triple-negative breast cancer (TNBC) cells. Our results indicate that it is possible to manipulate a drug response phenotype, from resistant to sensitive or vice versa, by perturbing gene candidates in DRNs and suggest plausible mechanisms regulating directionality of drug response sensitivity. More important, the current work highlights a new way to formulate systems-based therapeutic design: supplementing therapeutics that aim to target disease culprits with phenotypic modulators capable of altering DRN properties with the goal to re-sensitize resistant phenotypes.


Ridaforolimus (MK-8669) synergizes with Dalotuzumab (MK-0646) in hormone-sensitive breast cancer.

  • Marc A Becker‎ et al.
  • BMC cancer‎
  • 2016‎

Mammalian target of rapamycin (mTOR) represents a key downstream intermediate for a myriad of oncogenic receptor tyrosine kinases. In the case of the insulin-like growth factor (IGF) pathway, the mTOR complex (mTORC1) mediates IGF-1 receptor (IGF-1R)-induced estrogen receptor alpha (ERα) phosphorylation/activation and leads to increased proliferation and growth in breast cancer cells. As a result, the prevalence of mTOR inhibitors combined with hormonal therapy has increased in recent years. Conversely, activated mTORC1 provides negative feedback regulation of IGF signaling via insulin receptor substrate (IRS)-1/2 serine phosphorylation and subsequent proteasomal degradation. Thus, the IGF pathway may provide escape (e.g. de novo or acquired resistance) from mTORC1 inhibitors. It is therefore plausible that combined inhibition of mTORC1 and IGF-1R for select subsets of ER-positive breast cancer patients presents as a viable therapeutic option.


Molecular phylogeny of Polyneoptera (Insecta) inferred from expanded mitogenomic data.

  • Nan Song‎ et al.
  • Scientific reports‎
  • 2016‎

The Polyneoptera represents one of the earliest insect radiations, comprising the majority of hemimetabolous orders, in which many species have great economic importance. Here, we sequenced eleven mitochondrial genomes of the polyneopteran insects by using high throughput pooled sequencing technology, and presented a phylogenetic reconstruction for this group based on expanded mitochondrial genome data. Our analyses included 189 taxa, of which 139 species represent all the major polyneopteran lineages. Multiple results support the monophyly of Polyneoptera, the monophyly of Dictyoptera, and the monophyly of Orthoptera. Sister taxon relationships Plecoptera + Dermaptera, and Zoraptera + Embioptera are also supported by most analyses. Within Dictyoptera, the Blattodea is consistently retrieved as paraphyly due to the sister group relationship of Cryptocercus with Isoptera. In addition, the results demonstrate that model selection, data treatment, and outgroup choice can have significant effects on the reconstructed phylogenetic relationships of Polyneoptera.


LHBs can elevate the expression of MDR1 through HIF-1α in patients with CHB infection: a comparative proteomic study.

  • Shiying Li‎ et al.
  • Oncotarget‎
  • 2017‎

Hepatitis B virus (HBV) infection is a major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). To gain a better understanding of the pathogenesis of HBV infection, this study aimed to investigate the differentially expressed proteins (DEPs) in liver tissues from patients with chronic hepatitis B (CHB) infection.


Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth.

  • Chunming Cheng‎ et al.
  • Cancer cell‎
  • 2015‎

Tumorigenesis is associated with increased glucose consumption and lipogenesis, but how these pathways are interlinked is unclear. Here, we delineate a pathway in which EGFR signaling, by increasing glucose uptake, promotes N-glycosylation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and consequent activation of SREBP-1, an ER-bound transcription factor with central roles in lipid metabolism. Glycosylation stabilizes SCAP and reduces its association with Insig-1, allowing movement of SCAP/SREBP to the Golgi and consequent proteolytic activation of SREBP. Xenograft studies reveal that blocking SCAP N-glycosylation ameliorates EGFRvIII-driven glioblastoma growth. Thus, SCAP acts as key glucose-responsive protein linking oncogenic signaling and fuel availability to SREBP-dependent lipogenesis. Targeting SCAP N-glycosylation may provide a promising means of treating malignancies and metabolic diseases.


CD36 is a co-receptor for hepatitis C virus E1 protein attachment.

  • Jun-Jun Cheng‎ et al.
  • Scientific reports‎
  • 2016‎

The cluster of differentiation 36 (CD36) is a membrane protein related to lipid metabolism. We show that HCV infection in vitro increased CD36 expression in either surface or soluble form. HCV attachment was facilitated through a direct interaction between CD36 and HCV E1 protein, causing enhanced entry and replication. The HCV co-receptor effect of CD36 was independent of that of SR-BI. CD36 monoclonal antibodies neutralized the effect of CD36 and reduced HCV replication. CD36 inhibitor sulfo-N-succinimidyl oleate (SSO), which directly bound CD36 but not SR-BI, significantly interrupted HCV entry, and therefore inhibited HCV replication. SSO's antiviral effect was seen only in HCV but not in other viruses. SSO in combination with known anti-HCV drugs showed additional inhibition against HCV. SSO was considerably safe in mice. Conclusively, CD36 interacts with HCV E1 and might be a co-receptor specific for HCV entry; thus, CD36 could be a potential drug target against HCV.


The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity.

  • Wenzhang Wang‎ et al.
  • Nature medicine‎
  • 2016‎

Genetic mutations in TAR DNA-binding protein 43 (TARDBP, also known as TDP-43) cause amyotrophic lateral sclerosis (ALS), and an increase in the presence of TDP-43 (encoded by TARDBP) in the cytoplasm is a prominent histopathological feature of degenerating neurons in various neurodegenerative diseases. However, the molecular mechanisms by which TDP-43 contributes to ALS pathophysiology remain elusive. Here we have found that TDP-43 accumulates in the mitochondria of neurons in subjects with ALS or frontotemporal dementia (FTD). Disease-associated mutations increase TDP-43 mitochondrial localization. In mitochondria, wild-type (WT) and mutant TDP-43 preferentially bind mitochondria-transcribed messenger RNAs (mRNAs) encoding respiratory complex I subunits ND3 and ND6, impair their expression and specifically cause complex I disassembly. The suppression of TDP-43 mitochondrial localization abolishes WT and mutant TDP-43-induced mitochondrial dysfunction and neuronal loss, and improves phenotypes of transgenic mutant TDP-43 mice. Thus, our studies link TDP-43 toxicity directly to mitochondrial bioenergetics and propose the targeting of TDP-43 mitochondrial localization as a promising therapeutic approach for neurodegeneration.


Activation of intrahepatic CD4+CXCR5+ T and CD19+ B cells is associated with viral clearance in a mouse model of acute hepatitis B virus infection.

  • Xiao-Fei Song‎ et al.
  • Oncotarget‎
  • 2016‎

The role of immunity in the pathogenesis of acute hepatitis B virus (HBV) infection is poorly understood. The purpose of this research was to define the intrahepatic immune factors responsible for viral clearance during acute HBV infection. The model of acute HBV infection was established by hydrodynamically transfecting mice with pCDNA3.1-HBV1.3 plasmids which contained a supergenomic HBV1.3-length transgene. The frequency of CD4+ CXCR5+ T cells, CD19+ B cells and their surface molecules in livers, spleens and peripheral blood were detected using flow cytometry. The lymphomononuclear cells isolated from the livers of transfected mice were further stimulated by HBc-derived peptides and then the frequency and cytokine secretion of HBV-specific CD4+CXCR5+ T cells were detected. We found that the frequency of CXCR5+ in CD4+ T cells was specifically increased; the expression of PD-1 was decreased while the expression of ICOS was increased on intrahepatic CD4+CXCR5+ T cells. Although the frequency of CD19+ B cells was not affected, the expression of PDL-1, ICOSL and IL-21R on B cells was increased in the livers of mice. The frequency of HBV-specific CD4+CXCR5+ T cells and the production of IL-21 by intrahepatic CD4+CXCR5+ T cells of mice with acute HBV infection were increased after stimulation. Furthermore, the expression of function-related molecules of intrahepatic CD4+CXCR5+ T, including Bcl-6, CXCR5, IL-6, IL-6R, IL-21 and IL-4 in the liver was increased during acute HBV infection. In conclusion, the activation of intrahepatic CD4+CXCR5+ T cells and B cells was associated with the clearance of HBV during acute infection.


XuefuZhuyu Tang exerts antitumor effects by inhibiting glioma cell metastasis and invasion via regulating tumor microenvironment.

  • Jianmin Liu‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

XuefuZhuyu Tang (XZT) is a traditional Chinese herb used for destagnation and is currently being used for oncotherapy. This study was intended to assess the effects of XZT on glioma along with its anticancer mechanism.


Design, synthesis and biological evaluation of novel betulinic acid derivatives.

  • Shengjie Yang‎ et al.
  • Chemistry Central journal‎
  • 2012‎

Tumor, is one of the major reason for human death, due to its widespread occurrence. Betulinic acid derivatives have attracted considerable attention as cancer chemopreventive agents and also as cancer therapeutics. Many of its derivatives inhibit the growth of human cancer cell lines by triggering apoptosis. With this background, we planned to synthesize a series of betulinic acid derivatives to assess their antiproliferation efficacy on human cancer cell lines.


The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS.

  • Ci-Di Chen‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2013‎

We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis.


Critical Role for GAB2 in Neuroblastoma Pathogenesis through the Promotion of SHP2/MYCN Cooperation.

  • Xiaoling Zhang‎ et al.
  • Cell reports‎
  • 2017‎

Growing evidence suggests a major role for Src-homology-2-domain-containing phosphatase 2 (SHP2/PTPN11) in MYCN-driven high-risk neuroblastoma, although biologic confirmation and a plausible mechanism for this contribution are lacking. Using a zebrafish model of MYCN-overexpressing neuroblastoma, we demonstrate that mutant ptpn11 expression in the adrenal gland analog of MYCN transgenic fish promotes the proliferation of hyperplastic neuroblasts, accelerates neuroblastomagenesis, and increases tumor penetrance. We identify a similar mechanism in tumors with wild-type ptpn11 and dysregulated Gab2, which encodes a Shp2 activator that is overexpressed in human neuroblastomas. In MYCN transgenic fish, Gab2 overexpression activated the Shp2-Ras-Erk pathway, enhanced neuroblastoma induction, and increased tumor penetrance. We conclude that MYCN cooperates with either GAB2-activated or mutant SHP2 in human neuroblastomagenesis. Our findings further suggest that combined inhibition of MYCN and the SHP2-RAS-ERK pathway could provide effective targeted therapy for high-risk neuroblastoma patients with MYCN amplification and aberrant SHP2 activation.


Role of Nrf2 signaling pathway in the radiation tolerance of patients with head and neck squamous cell carcinoma: an in vivo and in vitro study.

  • Tao Wang‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

We aimed to investigate the relationship between the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and the radiation tolerance of patients with head and neck squamous cell carcinoma (HNSCC). From January 2015 to January 2016, 117 patients with HNSCC were enrolled in our study and assigned into the sensitive and tolerance groups based on curative effect. Immunohistochemistry (IHC) was conducted to measure protein expressions of Nrf2, heme oxygenase-1 (HO1), NADPH quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST). Human squamous cell carcinoma cell line, HSC-4, was induced by radiation to construct the HSC-4-radiation resistance (RR) cell line. HSC-4 and HSC-4-RR were also assigned into the blank, negative control (NC) and Nrf2 siRNA groups. Cell Counting Kit-8 (CCK-8), quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were employed to detect cell viability, mRNA expression and protein expression, respectively, of Nrf2, HO1, NQO1 and GST. A total of 40 nude mice were equally assigned into the untreated, Nrf2 siRNA, radiation therapy (RT) and RT + Nrf2 siRNA groups. Compared with the sensitive group, patients in the tolerance group had upregulated Nrf2, HO1, NQO1 and GST expressions. HSC-4-RR cell line had improved cell viability and higher protein and mRNA expressions of Nrf2, HO1, NQO1 and GST compared with HSC-4 cell line. Compared with the HSC-4-NC and HSC-4-blank groups, the HSC-4-Nrf2 siRNA group had downregulated cell viability. Compared with the HSC-4-RR-NC and HSC-4-RR-blank groups, the HSC-4-RR-Nrf2 siRNA group had lower cell viability. However, the HSC-4-RR-Nrf2 siRNA group had elevated cell viability than the HSC-4-Nrf2 siRNA group. Tumor volume and tumor weight in the RT and RT + Nrf2 siRNA groups decreased evidently. The RT + Nrf2 siRNA group exhibited decreased tumor volume and tumor weight in comparison with the RT group. Our data demonstrated that downregulation of HO1, NQO1 and GST via inhibiting Nrf2 signaling pathway reduces the radiation tolerance of patients with HNSCC.


Novel WNT1 mutations in children with osteogenesis imperfecta: Clinical and functional characterization.

  • Yanqin Lu‎ et al.
  • Bone‎
  • 2018‎

Biallelic mutations in WNT1 can give rise to a rare form of moderate to severe OI. Here we report on 12 children (age 2 to 16 years; 5 girls) with biallelic WNT1 mutations.


Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase.

  • Emily K Schutsky‎ et al.
  • Nature biotechnology‎
  • 2018‎

Here we present APOBEC-coupled epigenetic sequencing (ACE-seq), a bisulfite-free method for localizing 5-hydroxymethylcytosine (5hmC) at single-base resolution with low DNA input. The method builds on the observation that AID/APOBEC family DNA deaminase enzymes can potently discriminate between cytosine modification states and exploits the non-destructive nature of enzymatic, rather than chemical, deamination. ACE-seq yielded high-confidence 5hmC profiles with at least 1,000-fold less DNA input than conventional methods. Applying ACE-seq to generate a base-resolution map of 5hmC in tissue-derived cortical excitatory neurons, we found that 5hmC was almost entirely confined to CG dinucleotides. The whole-genome map permitted cytosine, 5-methylcytosine (5mC) and 5hmC to be parsed and revealed genomic features that diverged from global patterns, including enhancers and imprinting control regions with high and low 5hmC/5mC ratios, respectively. Enzymatic deamination overcomes many challenges posed by bisulfite-based methods, thus expanding the scope of epigenome profiling to include scarce samples and opening new lines of inquiry regarding the role of cytosine modifications in genome biology.


Effect of alteplase on platelet function and receptor expression.

  • Jun Lu‎ et al.
  • The Journal of international medical research‎
  • 2019‎

To investigate the role of alteplase, a widely-used thrombolytic drug, in platelet function.


The Highly Divergent Mitochondrial Genomes Indicate That the Booklouse, Liposcelis bostrychophila (Psocoptera: Liposcelididae) Is a Cryptic Species.

  • Shiqian Feng‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2018‎

The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.


Pegylated-interferon plus ribavirin treatment does not alter the prevalence of resistance-associated substitutions to direct-acting antivirals in HCV genotype 1a patients.

  • Zhi-Wei Chen‎ et al.
  • Infection and drug resistance‎
  • 2017‎

Direct-acting antiviral (DAA) resistance-associated substitutions (RASs) can jeopardize the effectiveness of DAAs in patients with hepatitis C virus (HCV). The selection pressure by pegylated-interferon (Peg-IFN) plus ribavirin (P/R) treatment may enhance HCV genome variation. However, whether P/R treatment alters the rate of change of RASs is still unclear.


Identification of key genes, pathways and potential therapeutic agents for liver fibrosis using an integrated bioinformatics analysis.

  • Zhu Zhan‎ et al.
  • PeerJ‎
  • 2019‎

Liver fibrosis is often a consequence of chronic liver injury, and has the potential to progress to cirrhosis and liver cancer. Despite being an important human disease, there are currently no approved anti-fibrotic drugs. In this study, we aim to identify the key genes and pathways governing the pathophysiological processes of liver fibrosis, and to screen therapeutic anti-fibrotic agents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: