Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

CDKN2A inhibits formation of homotypic cell-in-cell structures.

  • Jianqing Liang‎ et al.
  • Oncogenesis‎
  • 2018‎

Cell-in-cell (CIC) structures, characterized by enclosure of one or more cells within another cell, were extensively documented in human cancers. Although elevated CIC formation was found in cancers with CDKN2A inactivation, a causal link between them remains to be established. We reported here that inhibiting CDKN2A expression effectively promoted homotypic CIC formation, whereas ectopic overexpression of p16INK4a or p14ARF, two proteins encoded by CDKN2A gene, significantly suppressed CIC formation in MCF7 cells. The regulation of CIC formation by CDKN2A was tightly correlated with subcellular redistribution of E-cadherin, F-actin rearrangement and reduced phosphorylation of myosin light chain 2 (p-MLC2), consistent with which, CDKN2A expression imparted cells winner/outer identity in competition assay. Moreover, CIC formation negatively correlates with p16INK4a expression in human breast cancers. Thus, our work identifies CDKN2A as the first tumor suppressor whose inactivation promotes homotypic CIC formation in human cancer cells.


A comprehensive survey of genetic variation in 20,691 subjects from four large cohorts.

  • Sara Lindström‎ et al.
  • PloS one‎
  • 2017‎

The Nurses' Health Study (NHS), Nurses' Health Study II (NHSII), Health Professionals Follow Up Study (HPFS) and the Physicians Health Study (PHS) have collected detailed longitudinal data on multiple exposures and traits for approximately 310,000 study participants over the last 35 years. Over 160,000 study participants across the cohorts have donated a DNA sample and to date, 20,691 subjects have been genotyped as part of genome-wide association studies (GWAS) of twelve primary outcomes. However, these studies utilized six different GWAS arrays making it difficult to conduct analyses of secondary phenotypes or share controls across studies. To allow for secondary analyses of these data, we have created three new datasets merged by platform family and performed imputation using a common reference panel, the 1,000 Genomes Phase I release. Here, we describe the methodology behind the data merging and imputation and present imputation quality statistics and association results from two GWAS of secondary phenotypes (body mass index (BMI) and venous thromboembolism (VTE)). We observed the strongest BMI association for the FTO SNP rs55872725 (β = 0.45, p = 3.48x10-22), and using a significance level of p = 0.05, we replicated 19 out of 32 known BMI SNPs. For VTE, we observed the strongest association for the rs2040445 SNP (OR = 2.17, 95% CI: 1.79-2.63, p = 2.70x10-15), located downstream of F5 and also observed significant associations for the known ABO and F11 regions. This pooled resource can be used to maximize power in GWAS of phenotypes collected across the cohorts and for studying gene-environment interactions as well as rare phenotypes and genotypes.


Association between a heme oxygenase-2 genetic variant and risk of Parkinson's disease in Han Chinese.

  • Sijia Tian‎ et al.
  • Neuroscience letters‎
  • 2017‎

Studies have reported conflicting results about possible associations between variants in heme oxygenase (HMOX) genes and risk of Parkinson's disease (PD) in Caucasians, and little is known about these associations in Asians. We genotyped the single-nucleotide polymorphisms (SNPs) rs2071746 and rs2071747 in HMOX1 and rs1051308 in HMOX2 in 583 Han Chinese with PD and 627 healthy controls using a customized 2×48-Plex SNP Scan™ kit. Frequencies of genotypes and minor alleles were similar between patients and controls for rs2071746 and rs2071747, but different for rs1051308(P=0.004, OR 1.705, 95%CI 1.191-2.442 for genotypes; P=0.009, OR 1.249, 95%CI 1.037-1.476 for alleles). Our results suggest that rs1051308 is associated with risk of developing PD in Han Chinese, and further studies involving various ethnicities are needed to validate the association.


Single-Anastomosis Duodenal Jejunal Bypass Improve Glucose Metabolism by Regulating Gut Microbiota and Short-Chain Fatty Acids in Goto-Kakisaki Rats.

  • Xiang Yu‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

In recent years, bariatric surgery has emerged as a promising treatment for type 2 diabetes. Bariatric surgery is known to cause alterations in the relative abundance and composition of gut microbiota, which may lead to alterations in the levels of Short-Chain Fatty Acids (SCFAs) that are produced during fermentation by gut microbes. However, little is known about the mechanism of improved glucose metabolism mediated by gut microbiota following bariatric surgery. The aim of our study was to explore whether changes in gut microbiota and in fecal SCFA could be detected following single-anastomosis duodenal jejunal bypass (DJB-sa) surgery, a type of bariatric surgery, and whether these alterations might be related to the improvement of glucose metabolism. To this end, we performed DJB-sa or SHAM surgery on Goto-Kakisaki (GK) rats. We then compared the glucose metabolism as well as changes in gut microbiota and SCFAs levels between both groups. Our results showed that DJB-sa surgery was associated with a significant decrease in fasting blood glucose (FBG), intraperitoneal glucose tolerance test (IPGTT), and fasting serum insulin (FSI). And, DJB-sa led to a change in the composition of gut microbiota including an increase in the relative abundance of SCFA-producing bacteria (Bifidobacterium and Subdoligranulum). Moreover, the levels of six SCFAs in feces, as well as the intestinal expression of SCFA receptors including G-protein-coupled receptor 41 (GPR41), G-protein-coupled receptor 43 (GPR43), and G-protein-coupled receptor 109A (GPR109A), and the expression of Glucagon-like peptide-1 (GLP-1) displayed a significant increase following DJB-sa compared with the Sham group. Thus, the gut microbiota may contribute to the improvement of glucose metabolism in type 2 diabetes following DJB-sa. In conclusion, our study shows that DJB-sa improves glucose metabolism by modulating gut microbiota and by increasing short-chain fatty acid production.


PCDH7 Inhibits the Formation of Homotypic Cell-in-Cell Structure.

  • Chenxi Wang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Though homotypic cell-in-cell (hoCIC) structures are implicated in the development and progression of multiple human tumors, the molecular mechanisms underlying their formation remain poorly understood. We found that the expression of Protocadherin-7 (PCDH7), an integral membrane protein, was negatively associated with the formation of hoCIC structures. Overexpression of PCDH7 efficiently inhibits, while its depletion significantly enhances, hoCIC formation, which was attributed to its regulation on intercellular adhesion and contractile actomyosin as well. Via directly interacting with and inactivating PP1α, a protein phosphatase that dephosphorylates pMLC2, PCDH7 increases the level of pMLC2 leading to enhanced actomyosin at the intercellular region and compromised hoCIC formation. Remarkably, PCDH7 enhanced anchorage-independent cell growth in a hoCIC-dependent manner. Together, we identified PCDH7 as the first trans-membrane protein that inhibits hoCIC formation to promote tumor growth.


Cerebrospinal Fluid Biomarkers in Multiple System Atrophy Relative to Parkinson's Disease: A Meta-Analysis.

  • Dan Xie‎ et al.
  • Behavioural neurology‎
  • 2021‎

To investigate the differences of candidate cerebrospinal fluid (CSF) biomarkers associated with multiple system atrophy (MSA) and Parkinson's disease (PD).


Subtype-Based Analysis of Cell-in-Cell Structures in Esophageal Squamous Cell Carcinoma.

  • Yuqi Wang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Cell-in-cell (CIC) structures are defined as the special structures with one or more cells enclosed inside another one. Increasing data indicated that CIC structures were functional surrogates of complicated cell behaviors and prognosis predictor in heterogeneous cancers. However, the CIC structure profiling and its prognostic value have not been reported in human esophageal squamous cell Carcinoma (ESCC). We conducted the analysis of subtyped CIC-based profiling in ESCC using "epithelium-macrophage-leukocyte" (EML) multiplex staining and examined the prognostic value of CIC structure profiling through Kaplan-Meier plotting and Cox regression model. Totally, five CIC structure subtypes were identified in ESCC tissue and the majority of them was homotypic CIC (hoCIC) with tumor cells inside tumor cells (TiT). By univariate and multivariate analyses, TiT was shown to be an independent prognostic factor for resectable ESCC, and patients with higher density of TiT tended to have longer post-operational survival time. Furthermore, in subpopulation analysis stratified by TNM stage, high TiT density was associated with longer overall survival (OS) in patients of TNM stages III and IV as compared with patients with low TiT density (mean OS: 51 vs 15 months, P = 0.04) and T3 stage (mean OS: 57 vs 17 months, P=0.024). Together, we reported the first CIC structure profiling in ESCC and explored the prognostic value of subtyped CIC structures, which supported the notion that functional pathology with CIC structure profiling is an emerging prognostic factor for human cancers, such as ESCC.


Dopant-Free Hole-Transporting Material Based on Poly(2,7-(9,9-bis(N,N-di-p-methoxylphenylamine)-4-phenyl))-fluorene for High-Performance Air-Processed Inverted Perovskite Solar Cells.

  • Baomin Zhao‎ et al.
  • Polymers‎
  • 2023‎

It is a great challenge to develop low-cost and dopant-free polymer hole-transporting materials (HTM) for PSCs, especially for efficient air-processed inverted (p-i-n) planar PSCs. A new homopolymer HTM, poly(2,7-(9,9-bis(N,N-di-p-methoxylphenyl amine)-4-phenyl))-fluorene (denoted as PFTPA), with appropriate photo-electrochemical, opto-electronic and thermal stability, was designed and synthesized in two steps to meet this challenge. By employing PFTPA as dopant-free hole-transport layer in air-processed inverted PSCs, a champion power conversion efficiency (PCE) of up to 16.82% (0.1 cm2) was achieved, much superior to that of commercial HTM PEDOT:PSS (13.8%) under the same conditions. Such a superiority is attributed to the well-aligned energy levels, improved morphology, and efficient hole-transporting, as well as hole-extraction characteristics at the perovskite/HTM interface. In particular, these PFTPA-based PSCs fabricated in the air atmosphere maintain a long-term stability of 91% under ambient air conditions for 1000 h. Finally, PFTPA as the dopant-free HTM was also fabricated the slot-die coated perovskite device through the same fabrication condition, and a maximum PCE of 13.84% was obtained. Our study demonstrated that the low-cost and facile homopolymer PFTPA as the dopant-free HTM are potential candidates for large-scale production perovskite solar cell.


Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders.

  • Symen Ligthart‎ et al.
  • American journal of human genetics‎
  • 2018‎

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.


Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes.

  • Matthew T Buckley‎ et al.
  • Molecular biology and evolution‎
  • 2017‎

FADS genes encode fatty acid desaturases that are important for the conversion of short chain polyunsaturated fatty acids (PUFAs) to long chain fatty acids. Prior studies indicate that the FADS genes have been subjected to strong positive selection in Africa, South Asia, Greenland, and Europe. By comparing FADS sequencing data from present-day and Bronze Age (5-3k years ago) Europeans, we identify possible targets of selection in the European population, which suggest that selection has targeted different alleles in the FADS genes in Europe than it has in South Asia or Greenland. The alleles showing the strongest changes in allele frequency since the Bronze Age show associations with expression changes and multiple lipid-related phenotypes. Furthermore, the selected alleles are associated with a decrease in linoleic acid and an increase in arachidonic and eicosapentaenoic acids among Europeans; this is an opposite effect of that observed for selected alleles in Inuit from Greenland. We show that multiple SNPs in the region affect expression levels and PUFA synthesis. Additionally, we find evidence for a gene-environment interaction influencing low-density lipoprotein (LDL) levels between alleles affecting PUFA synthesis and PUFA dietary intake: carriers of the derived allele display lower LDL cholesterol levels with a higher intake of PUFAs. We hypothesize that the selective patterns observed in Europeans were driven by a change in dietary composition of fatty acids following the transition to agriculture, resulting in a lower intake of arachidonic acid and eicosapentaenoic acid, but a higher intake of linoleic acid and α-linolenic acid.


Micronucleus production, activation of DNA damage response and cGAS-STING signaling in syncytia induced by SARS-CoV-2 infection.

  • He Ren‎ et al.
  • Biology direct‎
  • 2021‎

SARS-CoV-2 infection could cause severe acute respiratory syndrome, largely attributed to dysregulated immune activation and extensive lung tissue damage. However, the underlying mechanisms are not fully understood. Here, we reported that viral infection could induce syncytia formation within cells expressing ACE2 and the SARS-CoV-2 spike protein, leading to the production of micronuclei with an average rate of about 4 per syncytium (> 93%). Remarkably, these micronuclei were manifested with a high level of activation of both DNA damage response and cGAS-STING signaling, as indicated by micronucleus translocation of γH2Ax and cGAS, and upregulation of their respective downstream target genes. Since activation of these signaling pathways were known to be associated with cellular catastrophe and aberrant immune activation, these findings help explain the pathological effects of SARS-CoV-2 infection at cellular and molecular levels, and provide novel potential targets for COVID-19 therapy.


Multiwalled carbon nanotubes co-delivering sorafenib and epidermal growth factor receptor siRNA enhanced tumor-suppressing effect on liver cancer.

  • Zhili Wen‎ et al.
  • Aging‎
  • 2021‎

This study aimed to investigate the effects of multiwalled carbon nanotubes (MWNTs) co-delivering sorafenib (Sor) and epidermal growth factor receptor (EGFR) siRNA (MWNT/Sor/siRNA) on tumor growth in liver cancer (LC).


Genetic diversity fuels gene discovery for tobacco and alcohol use.

  • Gretchen R B Saunders‎ et al.
  • Nature‎
  • 2022‎

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


A saturated map of common genetic variants associated with human height.

  • Loïc Yengo‎ et al.
  • Nature‎
  • 2022‎

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis.

  • Fang Zheng‎ et al.
  • Nature communications‎
  • 2021‎

Hypoxia-inducible factor-1 (HIF-1) is a master driver of glucose metabolism in cancer cells. Here, we demonstrate that a HIF-1α anti-sense lncRNA, HIFAL, is essential for maintaining and enhancing HIF-1α-mediated transactivation and glycolysis. Mechanistically, HIFAL recruits prolyl hydroxylase 3 (PHD3) to pyruvate kinase 2 (PKM2) to induce its prolyl hydroxylation and introduces the PKM2/PHD3 complex into the nucleus via binding with heterogeneous nuclear ribonucleoprotein F (hnRNPF) to enhance HIF-1α transactivation. Reciprocally, HIF-1α induces HIFAL transcription, which forms a positive feed-forward loop to maintain the transactivation activity of HIF-1α. Clinically, high HIFAL expression is associated with aggressive breast cancer phenotype and poor patient outcome. Furthermore, HIFAL overexpression promotes tumor growth in vivo, while targeting both HIFAL and HIF-1α significantly reduces their effect on cancer growth. Overall, our results indicate a critical regulatory role of HIFAL in HIF-1α-driven transactivation and glycolysis, identifying HIFAL as a therapeutic target for cancer treatment.


RNA-seq profiling reveals differentially expressed genes as potential markers for vital reaction in skin contusion: a pilot study.

  • Jingtao Xu‎ et al.
  • Forensic sciences research‎
  • 2018‎

Detection of the vitality of wounds is essential in forensic practice. The present study used Illumina RNA-seq technology to determine gene expression profiles in contused mouse skin. In obtained high quality sequencing reads, the reads were mapped onto a reference transcriptome (Mus_musculus.GRCm38.83). The results revealed that there were 659 up-regulated and 996 down-regulated differentially expressed genes (DEGs) in contused mouse skin. The DEGs were further analyzed using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. Genes from different functional categories and signalling pathways were enriched, including the immune system process, immune response, defense response, cytokine-cytokine receptor interaction, complement and coagulation cascades and chemokine signalling pathway. Expression patterns of 11 DEGs were verified by RT-qPCR in mice skins. In addition, alterations of five DEGs were also analyzed in postmortem human wound samples. The results were in concordance with the results of RNA-seq. These findings suggest that RNA-seq is a powerful tool to reveal DEGs as potential markers for vital reaction in terms of forensic practices.


Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.

  • Mengzhen Liu‎ et al.
  • Nature genetics‎
  • 2019‎

Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.


Cyclooxygenase-2 in tumor-associated macrophages promotes metastatic potential of breast cancer cells through Akt pathway.

  • Lu Gan‎ et al.
  • International journal of biological sciences‎
  • 2016‎

Tumor-associated macrophages (TAMs) promote cancer development and progression by releasing various cytokines and chemokines. Previously, we have found that the number of COX-2+ TAMs was associated with lymph node metastasis in breast cancer. However, the mechanism remains enigmatic. In this study, we show that COX-2 in breast TAMs enhances the metastatic potential of breast cancer cells. COX-2 in TAMs induces MMP-9 expression and promotes epithelial-mesenchymal transition (EMT) in breast cancer cells. In addition, COX-2/PGE2 induces IL-6 release in macrophages. Furthermore, we find that the activation of Akt pathway in cancer cells is crucial for the pro-metastatic effect of COX-2+ TAMs by regulating MMP-9 and EMT. These findings indicate that TAMs facilitate breast cancer cell metastasis through COX-2-mediated intercellular communication.


Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression.

  • Manna Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Although cell-in-cell structures (CICs) could be detected in a wide range of human tumors, homotypic CICs formed between tumor cells occur at low rate for most of them. We recently reported that tumor cells lacking expression of E- and P-cadherin were incapable of forming homotypic CICs by entosis, and re-expression of E- or P-cadherin was sufficient to induce CICs formation in these tumor cells. In this work, we found that homotypic CICs formation was impaired in some tumor cells expressing high level of E-cadherin due to loss expression of alpha-catenin (α-catenin), a molecular linker between cadherin-mediated adherens junctions and F-actin. Expression of α-catenin in these tumor cells restored cell-cell adhesion and promoted CICs formation in a ROCK kinase-dependent way. Thus, our work identified α-catenin as another molecule in addition to E- and P-cadherin that were targeted to inactivate homotypic CICs formation in human tumor cells.


Polymorphism in MIR4697 but not VPS13C, GCH1, or SIPA1L2 is associated with risk of Parkinson's disease in a Han Chinese population.

  • Xinglong Yang‎ et al.
  • Neuroscience letters‎
  • 2017‎

A large meta-analysis recently identified six new loci associated with risk of PD, but subsequent studies have given discrepant results. Here we conducted a case-control study in a Han Chinese population in an attempt to clarify risk associations in Chinese. Among the four single-nucleotide polymorphisms (SNPs) that we examined - VPS13C-rs2414739, MIR4697-rs329648, GCH1-rs11158026, and SIPA1L2- rs10797576 we detected a significant association between rs329648 and risk of developing PD in a recessive model. This association remained significant after adjusting for gender and age (OR 1.87, 95%CI 1.295-2.694, p=8.21×10-4) or Bonferroni correction. The T allele of rs329648 occurred significantly more frequently among patients with PD than among healthy controls (OR 1.22, 95%CI 1.033-1.443, p=0.02), while there was no statistic significant after Bonferroni correction. Subgroup analysis showed a significant association specifically among males in a recessive model (OR 1.943, 95%CI 1.200-3.147, p=0.007). In contrast, genotye and allele frequencies at rs329648 did not differ significantly between female patients with PD and healthy female controls, or between patients with early-onset or late-onset PD. Our results suggest that rs329648 is associated with risk of developing PD in the Han Chinese population. Our findings should be verified in further studies, and they highlight the need for functional studies of MIR4697.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: