Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 120 papers

Natural killer T cells play a necessary role in modulating of immune-mediated liver injury by gut microbiota.

  • Jianing Chen‎ et al.
  • Scientific reports‎
  • 2014‎

Gut microbiota are implicated in many liver diseases. Concanavalin A (ConA)-induced hepatitis is a well-characterized murine model of fulminant immunological hepatic injury. Oral administration of pathogenic bacteria or gentamycin to the mice before ConA injection, liver injury and lymphocyte distribution in liver and intestine were assessed. Our data show that administration of pathogenic bacteria exacerbated the liver damage. There was more downregulation of activation-induced natural killer T (NKT) cells in the liver of pathogenic bacteria-treated ConA groups. Also, there was a negative correlation between the numbers of hepatic NKT cells and liver injury in our experiments. Moreover, intestinal dendritic cells (DCs) were increased in pathogenic bacteria-treated ConA groups. The activation of DCs in Peyer's patches and the liver was similar to the intestine. However, depletion of gut gram-negative bacteria alleviated ConA-induced liver injury, through suppressed hepatic NKT cells activation and DCs homing in liver and intestine. In vitro experiments revealed that DCs promoted NKT cell cytotoxicity against hepatocyte following stimulation with pathogenic bacteria. Our study suggests that increased intestinal pathogenic bacteria facilitate immune-mediated liver injury, which may be due to the activation of NKT cells that mediated by intestinal bacterial antigens activated DCs.


Impact of TROP2 expression on prognosis in solid tumors: A Systematic Review and Meta-analysis.

  • Ping Zeng‎ et al.
  • Scientific reports‎
  • 2016‎

Over-expression of TROP2 (the trophoblast cell surface antigen 2) was reported to predict poor prognosis in various solid tumors in number of studies. However, the results remained not comprehensive. Therefore, we here carried out this meta-analysis of relevant studies published on this topic to quantitatively evaluate the clinicopathological significance of TROP2 in solid tumors. Relevant articles were identified through searching the PubMed, Web of Science and Embase database. The primary outcomes were overall survival (OS) and disease-free survival (DFS). In this meta-analysis, 16 studies involving 2,569 participants were included, and we drew the conclusion that TROP2 overexpression was significantly associated with poor OS (pooled HR = 1.896, 95% CI = 1.599-2.247, P < 0.001) and short DFS (pooled HR = 2.336, 95% CI = 1.596-3.419, P < 0.001). Furthermore, the subgroup analysis revealed that the associations between TROP2 overexpression and the outcome endpoints (OS or DFS) were significant in in patients with female genital system neoplasms, as well in gastrointestine neoplasms. In addition, subgroup analysis found no difference HR across populations of different descent.Taken together, TROP2 overexpression was associated with poor survival in human solid tumors. TROP2 may be a valuable prognosis predictive biomarker and a potential therapeutic target in human solid tumors.


Decreased IL-17 during treatment of sputum smear-positive pulmonary tuberculosis due to increased regulatory T cells and IL-10.

  • Lichen Xu‎ et al.
  • Journal of translational medicine‎
  • 2016‎

Tuberculosis (TB) remains a major public health concern worldwide. Previous studies have demonstrated that IL-17 plays an important role in initial immune response and is involved in both immune-mediated protection and pathology following infection with Mycobacterium tuberculosis (MTB). However, the alterations and regulation of plasma IL-17 level during TB treatment remain unclear. Moreover, the cell type responsible for the production of IL-17 in TB patients requires further study.


High Throughput Sequencing of T Cell Antigen Receptors Reveals a Conserved TCR Repertoire.

  • Xianliang Hou‎ et al.
  • Medicine‎
  • 2016‎

The T-cell receptor (TCR) repertoire is a mirror of the human immune system that reflects processes caused by infections, cancer, autoimmunity, and aging. Next-generation sequencing has become a powerful tool for deep TCR profiling. Herein, we used this technology to study the repertoire features of TCR beta chain in the blood of healthy individuals.Peripheral blood samples were collected from 10 healthy donors. T cells were isolated with anti-human CD3 magnetic beads according to the manufacturer's protocol. We then combined multiplex-PCR, Illumina sequencing, and IMGT/High V-QUEST to analyze the characteristics and polymorphisms of the TCR.Most of the individual T cell clones were present at very low frequencies, suggesting that they had not undergone clonal expansion. The usage frequencies of the TCR beta variable, beta joining, and beta diversity gene segments were similar among T cells from different individuals. Notably, the usage frequency of individual nucleotides and amino acids within complementarity-determining region (CDR3) intervals was remarkably consistent between individuals. Moreover, our data show that terminal deoxynucleotidyl transferase activity was biased toward the insertion of G (31.92%) and C (27.14%) over A (21.82%) and T (19.12%) nucleotides.Some conserved features could be observed in the composition of CDR3, which may inform future studies of human TCR gene recombination.


FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines.

  • Ke Su‎ et al.
  • Mediators of inflammation‎
  • 2017‎

FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.


Prognostic significance of CIP2A expression in solid tumors: A meta-analysis.

  • Min Tang‎ et al.
  • PloS one‎
  • 2018‎

CIP2A, cancerous inhibitor of protein phosphatase 2A, was initially recognized as an oncoprotein. Recently several studies revealed that CIP2A could function as a prognosis biomarker, however, the result remained not comprehensive, partly due to small number of patients included individually. Here we carried out a meta-analysis of published studies to assess the prognostic significance of CIP2A in solid tumors. All eligible studies were identified through searching PubMed, Embase and Web of Science database. In this meta-analysis, 22 studies involving 4,579 participants were included, and we verified that CIP2A over-expression was significantly related with poor overall survival (pooled HR = 1.844, 95% CI = 1.528-2.225, P<0.001) and short disease free survival (pooled HR = 1.808, 95% CI = 1.591-2.055, P<0.001) in solid tumors. Additionally, subgroup analysis suggested that the trend of a poor overall survival with an increased CIP2A expression was present in East-Asian and European patients, as well as in lung cancer and colorectal cancer. To sum up, CIP2A over-expression was associated with poor survival in human solid tumors and might be a predictive factor of poor prognosis.


Transcriptomic Profiles in Zebrafish Liver Permit the Discrimination of Surface Water with Pollution Gradient and Different Discharges.

  • Zhou Zhang‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

The present study aims to evaluate the potential of transcriptomic profiles in evaluating the impacts of complex mixtures of pollutants at environmentally relevant concentrations on aquatic vertebrates. The changes in gene expression were determined using microarray in the liver of male zebrafish (Danio rerio) exposed to surface water collected from selected locations on the Hun River, China. The numbers of differentially expressed genes (DEGs) in each treatment ranged from 728 to 3292, which were positively correlated with chemical oxygen demand (COD). Predominant transcriptomic responses included peroxisome proliferator-activated receptors (PPAR) signaling and steroid biosynthesis. Key pathways in immune system were also affected. Notably, two human diseases related pathways, insulin resistance and Salmonella infection were enriched. Clustering analysis and principle component analysis with DEGs differentiated the upstream and downstream site of Shenyang City, and the mainstream and the tributary sites near the junction. Comparison the gene expression profiles of zebrafish exposed to river surface water with those to individual chemicals found higher similarity of the river water with estradiol than several other organic pollutants and metals. Results suggested that the transcriptomic profiles of zebrafish is promising in differentiating surface water with pollution gradient and different discharges and in providing valuable information to support discharge management.


Establishment of microRNA, transcript and protein regulatory networks in Alport syndrome induced pluripotent stem cells.

  • Wenbiao Chen‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Alport syndrome (AS) is an inherited progressive disease caused by mutations in genes encoding for the α3, α4 and α5 chains, which are an essential component of type IV collagen and are required for formation of the glomerular basement membrane. However, the underlying etiology of AS remains largely unknown, and the aim of the present study was to examine the genetic mechanisms in AS. Induced pluripotent stem cells (iPSCs) were generated from renal tubular cells. The Illumina HiSeq™ 2000 system and iTRAQ‑coupled 2D liquid chromatography‑tandem mass spectrometry were used to generate the sequences of microRNAs (miRNAs), transcripts and proteins from AS‑iPSCs. Integration of miRNA, transcript and protein expression data was used to construct regulatory networks and identify specific miRNA targets amongst the transcripts and proteins. Relative quantitative proteomics using iTRAQ technology revealed 383 differentially abundant proteins, and high‑throughput sequencing identified 155 differentially expressed miRNAs and 1,168 differentially expressed transcripts. Potential miRNA targets were predicted using miRanda, TargetScan and Pictar. All target proteins and transcripts were subjected to network analysis with miRNAs. Gene ontology analysis of the miRNAs and their targets revealed functional information on the iPSCs, including biological process and cell signaling. Kyoto Encyclopedia of Genes and Genomes pathways analysis revealed that the transcripts and proteins were primarily enriched in metabolic and cell adhesion molecule pathways. In addition, the network maps identified hsa‑miRNA (miR)‑4775 as a prominent miRNA that was associated with a number of targets. Similarly, the prominent ELV‑like protein 1‑A and epidermal growth factor receptor (EGFR)‑associated transcripts were identified. Reverse transcription‑quantitative polymerase chain reaction analysis was used to confirm the upregulation of hsa‑miR‑4775 and EGFR. The integrated approach used in the present study provided a comprehensive molecular characterization of AS. The results may also further understanding of the genetic pathogenesis of AS and facilitate the identification of candidate biomarkers for AS.


Causal effects of blood lipids on amyotrophic lateral sclerosis: a Mendelian randomization study.

  • Ping Zeng‎ et al.
  • Human molecular genetics‎
  • 2019‎

Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disorder that is predicted to increase across the globe by ~70% in the following decades. Understanding the disease causal mechanism underlying ALS and identifying modifiable risks factors for ALS hold the key for the development of effective preventative and treatment strategies. Here, we investigate the causal effects of four blood lipid traits that include high-density lipoprotein, low-density lipoprotein (LDL), total cholesterol and triglycerides on the risk of ALS. By leveraging instrument variables from multiple large-scale genome-wide association studies in both European and East Asian populations, we carry out one of the largest and most comprehensive Mendelian randomization analyses performed to date on the causal relationship between lipids and ALS. Among the four lipids, we found that only LDL is causally associated with ALS and that higher LDL level increases the risk of ALS in both the European and East Asian populations. Specifically, the odds ratio of ALS per 1 standard deviation (i.e. 39.0 mg/dL) increase of LDL is estimated to be 1.14 [95% confidence interval (CI), 1.05-1.24; P = 1.38E-3] in the European population and 1.06 (95% CI, 1.00-1.12; P = 0.044) in the East Asian population. The identified causal relationship between LDL and ALS is robust with respect to the choice of statistical methods and is validated through extensive sensitivity analyses that guard against various model assumption violations. Our study provides important evidence supporting the causal role of higher LDL on increasing the risk of ALS, paving ways for the development of preventative strategies for reducing the disease burden of ALS across multiple nations.


Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis.

  • Lishun Xiao‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Genome-wide association studies (GWAS) have identified multiple causal genes associated with amyotrophic lateral sclerosis (ALS); however, the genetic architecture of ALS remains completely unknown and a large number of causal genes have yet been discovered. To full such gap in part, we implemented an integrative analysis of transcriptome-wide association study (TWAS) for ALS to prioritize causal genes with summary statistics from 80,610 European individuals and employed 13 GTEx brain tissues as reference transcriptome panels. The summary-level TWAS analysis with single brain tissue was first undertaken and then a flexible p-value combination strategy, called summary data-based Cauchy Aggregation TWAS (SCAT), was proposed to pool association signals from single-tissue TWAS analysis while protecting against highly positive correlation among tests. Extensive simulations demonstrated SCAT can produce well-calibrated p-value for the control of type I error and was often much more powerful to identify association signals across various scenarios compared with single-tissue TWAS analysis. Using SCAT, we replicated three ALS-associated genes (i.e., ATXN3, SCFD1, and C9orf72) identified in previous GWASs and discovered additional five genes (i.e., SLC9A8, FAM66D, TRIP11, JUP, and RP11-529H20.6) which were not reported before. Furthermore, we discovered the five associations were largely driven by genes themselves and thus might be new genes which were likely related to the risk of ALS. However, further investigations are warranted to verify these results and untangle the pathophysiological function of the genes in developing ALS.


Causal association of type 2 diabetes with amyotrophic lateral sclerosis: new evidence from Mendelian randomization using GWAS summary statistics.

  • Ping Zeng‎ et al.
  • BMC medicine‎
  • 2019‎

Associations between type 2 diabetes (T2D) and amyotrophic lateral sclerosis (ALS) were discovered in observational studies in both European and East Asian populations. However, whether such associations are causal remains largely unknown.


Predicting the occurrence of multidrug-resistant organism colonization or infection in ICU patients: development and validation of a novel multivariate prediction model.

  • Li Wang‎ et al.
  • Antimicrobial resistance and infection control‎
  • 2020‎

Multidrug-resistant organisms (MDROs) have emerged as an important cause of poor prognoses of patients in the intensive care unit (ICU). This study aimed to establish an easy-to-use nomogram for predicting the occurrence of MDRO colonization or infection in ICU patients.


Comprehensive Analysis of the mRNA-lncRNA Co-expression Profile and ceRNA Networks Patterns in Chronic Hepatitis B.

  • Wenbiao Chen‎ et al.
  • Current genomics‎
  • 2019‎

Long non-coding RNAs (lncRNAs) are emerging as important regulators in the modulation of virus infection by targeting mRNA transcription. However, their roles in chronic hepatitis B (CHB) remain to be elucidated.


Jackknife Model Averaging Prediction Methods for Complex Phenotypes with Gene Expression Levels by Integrating External Pathway Information.

  • Xinghao Yu‎ et al.
  • Computational and mathematical methods in medicine‎
  • 2019‎

In the past few years many prediction approaches have been proposed and widely employed in high dimensional genetic data for disease risk evaluation. However, those approaches typically ignore in model fitting the important group structures that naturally exists in genetic data.


Shorter TCR β-Chains Are Highly Enriched During Thymic Selection and Antigen-Driven Selection.

  • Xianliang Hou‎ et al.
  • Frontiers in immunology‎
  • 2019‎

The adaptive immune system uses several strategies to generate a repertoire of T cell receptors (TCR) with sufficient diversity to recognize the universe of potential pathogens. However, it remains unclear how differences in the T cell receptor (TCR) contribute to heterogeneity in T cell state. In this study, we used polychromatic flow cytometry to isolate highly pure CD4+/CD8+ naive and memory T cells, and applied deep sequencing to characterize corresponding TCR β-chain (TCRβ) complementary-determining region 3 (CDR3) repertoires. We find that shorter TCRβ CDR3s with fewer insertions were highly enriched during thymic selection. Antigen-experienced T cells (memory T cells) harbor shorter CDR3s vs. naive T cells. Moreover, the public TCRβ CDR3 clonotypes within cell subsets or interindividual tend to have shorter CDR3 length and a significantly larger size compared with "private" clonotypes. Taken together, shorter CDR3s highly enriched during thymic selection and antigen-driven selection, and further enriched in public T-cell responses. These results indicated that it may be evolutionary pressures drive short CDR3s to recognize most of antigen in nature.


Characterizing the Structural Pattern of Heavy Smokers Using Multivoxel Pattern Analysis.

  • Yufeng Ye‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

Background: Smoking addiction is a major public health issue which causes a series of chronic diseases and mortalities worldwide. We aimed to explore the most discriminative gray matter regions between heavy smokers and healthy controls with a data-driven multivoxel pattern analysis technique, and to explore the methodological differences between multivoxel pattern analysis and voxel-based morphometry. Methods: Traditional voxel-based morphometry has continuously contributed to finding smoking addiction-related regions on structural magnetic resonance imaging. However, voxel-based morphometry has its inherent limitations. In this study, a multivoxel pattern analysis using a searchlight algorithm and support vector machine was applied on structural magnetic resonance imaging to identify the spatial pattern of gray matter volume in heavy smokers. Results: Our proposed method yielded a voxel-wise accuracy of at least 81% for classifying heavy smokers from healthy controls. The identified regions were primarily located at the temporal cortex and prefrontal cortex, occipital cortex, thalamus (bilateral), insula (left), anterior and median cingulate gyri, and precuneus (left). Conclusions: Our results suggested that several regions, which were seldomly reported in voxel-based morphometry analysis, might be latently correlated with smoking addiction. Such findings might provide insights for understanding the mechanism of chronic smoking and the creation of effective cessation treatment. Multivoxel pattern analysis can be efficient in locating brain discriminative regions which were neglected by voxel-based morphometry.


RBM15-mediated N6-methyladenosine modification affects COVID-19 severity by regulating the expression of multitarget genes.

  • Yuting Meng‎ et al.
  • Cell death & disease‎
  • 2021‎

Severe coronavirus disease 2019 (COVID-19) is characterized by symptoms of lymphopenia and multiorgan damage, but the underlying mechanisms remain unclear. To explore the function of N6-methyladenosine (m6A) modifications in COVID-19, we performed microarray analyses to comprehensively characterize the m6A epitranscriptome. The results revealed distinct global m6A profiles in severe and mild COVID-19 patients. Programmed cell death and inflammatory response were the major biological processes modulated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Further, RBM15, a major m6A methyltransferase, was significantly elevated and positively correlated with disease severity. Silencing RBM15 drastically reduced lymphocyte death in vitro. Knockdown of RBM15 remarkably suppressed the expression levels of multitarget genes related to programmed cell death and inflammatory response. This study shows that SARS-CoV-2 infection alters the m6A epitranscriptome of lymphocytes, particularly in the case of severe patients. RBM15 regulated host immune response to SARS-CoV-2 by elevating m6A modifications of multitarget genes. These findings indicate that RBM15 can serve as a target for the treatment of COVID-19.


Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics.

  • Haojie Lu‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Clinical and epidemiological studies have suggested systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are comorbidities and common genetic etiologies can partly explain such coexistence. However, shared genetic determinations underlying the two diseases remain largely unknown.


Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer.

  • Yixin Gao‎ et al.
  • Frontiers in genetics‎
  • 2021‎

In two-sample Mendelian randomization (MR) studies, sex instrumental heterogeneity is an important problem needed to address carefully, which however is often overlooked and may lead to misleading causal inference.


Evaluating Causal Relationship Between Metabolites and Six Cardiovascular Diseases Based on GWAS Summary Statistics.

  • Jiahao Qiao‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Cardiovascular diseases (CVDs) remain the main cause of morbidity and mortality worldwide. The pathological mechanism and underlying biological processes of these diseases with metabolites remain unclear. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to evaluate the causal effect of metabolites on these diseases by making full use of the latest GWAS summary statistics for 486 metabolites and six major CVDs. Extensive sensitivity analyses were implemented to validate our MR results. We also conducted linkage disequilibrium score regression (LDSC) and colocalization analysis to investigate whether MR findings were driven by genetic similarity or hybridization between LD and disease-associated gene loci. We identified a total of 310 suggestive associations across all metabolites and CVDs, and finally obtained four significant associations, including bradykinin, des-arg(9) (odds ratio [OR] = 1.160, 95% confidence intervals [CIs]: 1.080-1.246, false discovery rate [FDR] = 0.022) on ischemic stroke, N-acetylglycine (OR = 0.946, 95%CIs: 0.920-0.973, FDR = 0.023), X-09026 (OR = 0.845, 95%CIs: 0.779-0.916, FDR = 0.021) and X-14473 (OR = 0.938, 95%CIs = 0.907-0.971, FDR = 0.040) on hypertension. Sensitivity analyses showed that these causal associations were robust, the LDSC and colocalization analyses demonstrated that the identified associations were unlikely confused by LD. Moreover, we identified 15 important metabolic pathways might be involved in the pathogenesis of CVDs. Overall, our work identifies several metabolites that have a causal relationship with CVDs, and improves our understanding of the pathogenesis and treatment strategies for these diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: