Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 206 papers

Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone from Cassia obtusifolia L. Ameliorate Non-Alcoholic Fatty Liver.

  • Lu Mei‎ et al.
  • PloS one‎
  • 2015‎

Non-alcoholic fatty liver disease (NAFLD) has become a common liver disease in recent decades. No effective treatment is currently available. Probiotics and natural functional food may be promising therapeutic approaches to this disease. The present study aims to investigate the efficiency of the anthraquinone from Cassia obtusifolia L. (AC) together with cholesterol-lowering probiotics (P) to improve high-fat diet (HFD)-induced NAFLD in rat models and elucidate the underlying mechanism. Cholesterol-lowering probiotics were screened out by MRS-cholesterol broth with ammonium ferric sulfate method. Male Sprague-Dawley rats were fed with HFD and subsequently administered with AC and/or P. Lipid metabolism parameters and fat synthesis related genes in rat liver, as well as the diversity of gut microbiota were evaluated. The results demonstrated that, compared with the NAFLD rat, the serum lipid levels of treated rats were reduced effectively. Besides, cholesterol 7α-hydroxylase (CYP7A1), low density lipoprotein receptor (LDL-R) and farnesoid X receptor (FXR) were up-regulated while the expression of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR) was reduced. The expression of peroxisome proliferator activated receptor (PPAR)-α protein was significantly increased while the expression of PPAR-γ and sterol regulatory element binding protein-1c (SREBP-1c) was down-regulated. In addition, compared with HFD group, in AC, P and AC+P group, the expression of intestinal tight-junction protein occludin and zonula occluden-1 (ZO-1) were up-regulated. Furthermore, altered gut microbiota diversity after the treatment of probiotics and AC were analysed. The combination of cholesterol-lowering probiotics and AC possesses a therapeutic effect on NAFLD in rats by up-regulating CYP7A1, LDL-R, FXR mRNA and PPAR-α protein produced in the process of fat metabolism while down-regulating the expression of HMGCR, PPAR-γ and SREBP-1c, and through normalizing the intestinal dysbiosis and improving the intestinal mucosal barrier function.


Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation.

  • Zhiqiang Liu‎ et al.
  • Oncotarget‎
  • 2015‎

A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma chemotherapy resistance. We reveal that mature human adipocytes activate autophagy and upregulate the expression of autophagic proteins, thereby suppressing chemotherapy-induced caspase cleavage and apoptosis in myeloma cells. We found that adipocytes secreted known and novel adipokines, such as leptin and adipsin. The addition of these adipokines enhanced the expression of autophagic proteins and reduced apoptosis in myeloma cells. In vivo studies further demonstrated the importance of bone marrow-derived adipocytes in the reduced response of myeloma cells to chemotherapy. Our findings suggest that adipocytes, adipocyte-secreted adipokines, and adipocyte-activated autophagy are novel targets for combatting chemotherapy resistance and enhancing treatment efficacy in myeloma patients.


Systematically Characterize the Anti-Alzheimer's Disease Mechanism of Lignans from S. chinensis based on In-Vivo Ingredient Analysis and Target-Network Pharmacology Strategy by UHPLC⁻Q-TOF-MS.

  • Mengying Wei‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Lignans from Schisandra chinensis (Turcz.) Baill can ameliorate cognitive impairment in animals with Alzheimer's disease (AD). However, the metabolism of absorbed ingredients and the potential targets of the lignans from S. chinensis in animals with AD have not been systematically investigated. Therefore, for the first time, we performed an in-vivo ingredient analysis and implemented a target-network pharmacology strategy to assess the effects of lignans from S. chinensis in rats with AD. Ten absorbed prototype constituents and 39 metabolites were identified or tentatively characterized in the plasma of dosed rats with AD using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Based on the results of analysis of the effective constituents in vivo, the potential therapeutic mechanism of the effective constituents in the rats with AD was investigated using a target-network pharmacology approach and independent experimental validation. The results showed that the treatment effects of lignans from S. chinensis on cognitive impairment might involve the regulation of amyloid precursor protein metabolism, neurofibrillary tangles, neurotransmitter metabolism, inflammatory response, and antioxidant system. Overall, we identified the effective components of lignans in S. chinensis that can improve the cognitive impairment induced by AD and proposed potential therapeutic metabolic pathways. The results might serve as the basis for a fundamental strategy to explore effective therapeutic drugs to treat AD.


Effects of morphine withdrawal on the membrane properties of medium spiny neurons in the nucleus accumbens shell.

  • Xiaobo Wu‎ et al.
  • Brain research bulletin‎
  • 2013‎

Medium spiny neurons (MSNs) in the nucleus accumbens (NAc) undergo persistent alterations in their biological and physiological characteristics upon exposure to drugs of abuse. Previous studies demonstrated that the biochemical, morphological, and intrinsic physiological properties of MSNs are heterogeneous and provided new insights into the physiological and molecular roles of individual MSNs in addictive behaviors. However, it remains unclear whether MSNs in the NAc shell (NAcSh), an important region for mediating behavioral sensitization, are electrophysiologically heterogeneous and how such heterogeneity is relevant to neuroadaptation associated with drug addiction. Here, the membrane properties, i.e., the intrinsic excitability and spike adaptation, of MSNs in the NAcSh from saline- or morphine-treated rats were investigated in vitro by whole-cell recording. In saline-treated rats, three distinct cell types were identified by their membrane properties: type I neurons showed high levels of intrinsic excitability and rapid spike adaptation; type II neurons showed moderate levels of intrinsic excitability and relatively slow spike frequency adaptation; type III neurons showed low levels of intrinsic excitability and putative strong spike adaptation. MSNs in rats undergoing withdrawal from chronic morphine treatment (10-14 days after the last injection) also exhibited the typical firing behaviors of these three types of neurons. However, the membrane properties of the MSNs were differentially altered after withdrawal. There was an enhancement in intrinsic excitability in type II MSNs and a promotion of spike adaptation in type I MSNs. The apamin-sensitive afterhyperpolarization current (I(AHP)) and the apamin-insensitive I(AHP) of the NAcSh MSNs were attenuated after chronic morphine withdrawal. These findings suggest that individual MSNs in the NAcSh manifest unique electrophysiological properties, which might contribute to psychostimulant-induced neuroadaptation.


The stem cell adjuvant with Exendin-4 repairs the heart after myocardial infarction via STAT3 activation.

  • Jianfeng Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

The poor survival of cells in ischaemic myocardium is a major obstacle for stem cell therapy. Exendin-4 holds the potential of cardioprotective effect based on its pleiotropic activity. This study investigated whether Exendin-4 in conjunction with adipose-derived stem cells (ADSCs) could improve the stem cell survival and contribute to myocardial repairs after infarction. Myocardial infarction (MI) was induced by the left anterior descending artery ligation in adult male Sprague-Dawley rats. ADSCs carrying double-fusion reporter gene [firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)] were quickly injected into border zone of MI in rats treated with or without Exendin-4. Exendin-4 enhanced the survival of transplanted ADSCs, as demonstrated by the longitudinal in vivo bioluminescence imaging. Moreover, ADSCs adjuvant with Exendin-4 decreased oxidative stress, apoptosis and fibrosis. They also improved myocardial viability and cardiac function and increased the differentiation rates of ADSCs into cardiomyocytes and vascular smooth muscle cells in vivo. Then, ADSCs were exposed to hydrogen peroxide/serum deprivation (H(2)O(2)/SD) to mimic the ischaemic environment in vitro. Results showed that Exendin-4 decreased the apoptosis and enhanced the paracrine effect of ADSCs. In addition, Exendin-4 activated signal transducers and activators of transcription 3 (STAT3) through the phosphorylation of Akt and ERK1/2. Furthermore, Exendin-4 increased the anti-apoptotic protein Bcl-2, but decreased the pro-apoptotic protein Bax of ADSCs. In conclusion, Exendin-4 could improve the survival and therapeutic efficacy of transplanted ADSCs through STAT3 activation via the phosphorylation of Akt and ERK1/2. This study suggests the potential application of Exendin-4 for stem cell-based heart regeneration.


Novel nanometer scaffolds regulate the biological behaviors of neural stem cells.

  • Jihui Zhou‎ et al.
  • Neural regeneration research‎
  • 2013‎

Ideal tissue-engineered scaffold materials regulate proliferation, apoptosis and differentiation of cells seeded on them by regulating gene expression. In this study, aligned and randomly oriented collagen nanofiber scaffolds were prepared using electronic spinning technology. Their diameters and appearance reached the standards of tissue-engineered nanometer scaffolds. The nanofiber scaffolds were characterized by a high swelling ratio, high porosity and good mechanical properties. The proliferation of spinal cord-derived neural stem cells on novel nanofiber scaffolds was obviously enhanced. The proportions of cells in the S and G2/M phases noticeably increased. Moreover, the proliferation rate of neural stem cells on the aligned collagen nanofiber scaffolds was high. The expression levels of cyclin D1 and cyclin-dependent kinase 2 were increased. Bcl-2 expression was significantly increased, but Bax and caspase-3 gene expressions were obviously decreased. There was no significant difference in the differentiation of neural stem cells into neurons on aligned and randomly oriented collagen nanofiber scaffolds. These results indicate that novel nanofiber scaffolds could promote the proliferation of spinal cord-derived neural stem cells and inhibit apoptosis without inducing differentiation. Nanofiber scaffolds regulate apoptosis and proliferation in neural stem cells by altering gene expression.


Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function.

  • Jin Zhou‎ et al.
  • Scientific reports‎
  • 2014‎

Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction.


Measurement of deformation rate in nasal septum deviation by three-dimensional computer tomography reconstruction and its application in nasal septoplasty endoscopic surgery.

  • Gui Yang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

Nasal septum deviation (NSD) typically occurs following otorhinolaryngologic surgery. However, there is a lack of biomechanical parameters able to accurately evaluate the severity of NSD. The present study aimed to determine whether the deformation rate (DR) is associated with visual analogue scale (VAS) and nasal airway resistance (NAR), and to evaluate the application of DR measurements in nasal septoplasty endoscopic surgery. In the present clinical trial, a total of 30 patients with NSD were enrolled, and DRs were calculated prior to surgery by three dimensional computer tomography (3D-CT) reconstruction techniques combined with mechanical analysis. The distribution of stress lines at the nasal septum deviation site was evaluated prior to operation. Following nasal septoplasty endoscopic surgery, pre and postoperation scores for VAS and NAR were compared. The results demonstrated that DR was significantly correlated with preoperational NAR (r=0.534) and VAS scores (r=0.397). According to preoperative CT measurements of NSD, DR and biomechanical properties, selective excision was performed to remove core areas of stress. It was observed that postoperative DR, NAR and VAS scores were significantly lower (all P<0.01) than those measured preoperation. Furthermore, over a follow-up period of 3 months, 23 cases (73.1%) were cured and 7 cases (23.3%) exhibited improvements. These results indicate that preoperative measurement of septum DR by 3D-CT reconstruction techniques may be important in determining the specific surgical approach of nasal septoplasty required.


Amelioration of collagen-induced arthritis using antigen-loaded dendritic cells modified with NF-κB decoy oligodeoxynucleotides.

  • Hongmei Jiang‎ et al.
  • Drug design, development and therapy‎
  • 2017‎

Dendritic cells (DCs) play an important role in the initiation of autoimmunity in rheumatoid arthritis (RA); therefore, the use of DCs needs to be explored to develop new therapeutic approaches for RA. Here, we investigated the therapeutic effect of bovine type II collagen (BIIC)-loaded DCs modified with NF-κB decoy oligodeoxynucleotides (ODNs) on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms. DCs treated with BIIC and NF-κB decoy ODNs exhibited features of immature DCs with low levels of costimulatory molecule (CD80 and CD86) expression. The development of arthritis in rats with CIA injected with BIIC + NF-κB decoy ODN-propagated DCs (BIIC-decoy DCs) was significantly ameliorated compared to that in rats injected with BIIC-propagated DCs or phosphate-buffered saline. We also found that the BIIC-decoy DCs exerted antiarthritis effects by inhibiting self-lymphocyte proliferative response and suppressing IFN-γ and anti-BIIC antibody production and inducing IL-10 antibody production. Additionally, antihuman serum antibodies were successfully produced in the rats treated with BIIC-decoy DCs but not in those treated with NF-κB decoy ODN-propagated DCs; moreover, the BIIC-decoy DCs did not affect immune function in the normal rats. These findings suggested that NF-κB decoy ODN-modified DCs loaded with a specific antigen might offer a practical method for the treatment of human RA.


Targeted metabolome profiling by dual-probe microdialysis sampling and treatment using Gardenia jasminoides for rats with type 2 diabetes.

  • Lu Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Diabetes causes a variety of end-stage organ complications, including diabetic nephropathy. Metabolomics offers an approach for characterizing biofluid metabolic changes, but studies focusing on diabetic nephropathy are limited due to the loss of tissue-specific metabolic information. A microdialysis application for the sampling of intact endogenous metabolites has been developed, utilizing two probes simultaneously inserted into the kidney tissues and jugular vein of rats with type 2 diabetes. The comprehensive and quantitative analysis of 20 diagnostic biomarkers closely realated to type 2 diabetes and its complications were performed. Results indicated that amino acid and nucleotide levels were lower in diabetic rats, revealing that the metabolic pathways of amino acid, as well as purine and pyrimidine, were disturbed. Targeted metabolomics using mass spectrometry was performed to find potential therapeutic biomarkers and related metabolic pathways of Gardenia jasminoides (G. jasminoides) for treating diabetes. Results suggested that seven biomarkers in the kidney and five biomarkers in the blood were related to G. jasminoides. In addition, the marked perturbations of pathways were regulated after treatment with G. jasminoides, including amino acid metabolism and purine metabolism. These biomarkers and metabolic pathways provided new understanding for molecular mechanisms of G. jasminoides for treating diabetes and its complications.


Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats.

  • Yuping Wang‎ et al.
  • PloS one‎
  • 2013‎

To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense.


Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium.

  • Zhiqiang Liu‎ et al.
  • PloS one‎
  • 2013‎

Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy.


Regulation of axonal HCN1 trafficking in perforant path involves expression of specific TRIP8b isoforms.

  • Wiebke Wilkars‎ et al.
  • PloS one‎
  • 2012‎

The functions of HCN channels in neurons depend critically on their subcellular localization, requiring fine-tuned machinery that regulates subcellular channel trafficking. Here we provide evidence that regulatory mechanisms governing axonal HCN channel trafficking involve association of the channels with specific isoforms of the auxiliary subunit TRIP8b. In the medial perforant path, which normally contains HCN1 channels in axon terminals in immature but not in adult rodents, we found axonal HCN1 significantly increased in adult mice lacking TRIP8b (TRIP8b(-/-)). Interestingly, adult mice harboring a mutation that results in expression of only the two most abundant TRIP8b isoforms (TRIP8b[1b/2](-/-)) exhibited an HCN1 expression pattern similar to wildtype mice, suggesting that presence of one or both of these isoforms (TRIP8b(1a), TRIP8b(1a-4)) prevents HCN1 from being transported to medial perforant path axons in adult mice. Concordantly, expression analyses demonstrated a strong increase of expression of both TRIP8b isoforms in rat entorhinal cortex with age. However, when overexpressed in cultured entorhinal neurons of rats, TRIP8b(1a), but not TRIP8b(1a-4), altered substantially the subcellular distribution of HCN1 by promoting somatodendritic and reducing axonal expression of the channels. Taken together, we conclude that TRIP8b isoforms are important regulators of HCN1 trafficking in entorhinal neurons and that the alternatively-spliced isoform TRIP8b(1a) could be responsible for the age-dependent redistribution of HCN channels out of perforant path axon terminals.


Telocytes accompanying cardiomyocyte in primary culture: two- and three-dimensional culture environment.

  • Jin Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Recently, the presence of telocytes was demonstrated in human and mammalian tissues and organs (digestive and extra-digestive organs, genitourinary organs, heart, placenta, lungs, pleura, striated muscle). Noteworthy, telocytes seem to play a significant role in the normal function and regeneration of myocardium. By cultures of telocytes in two- and three-dimensional environment we aimed to study the typical morphological features as well as functionality of telocytes, which will provide important support to understand their in vivo roles. Neonatal rat cardiomyocytes were isolated and cultured as seeding cells in vitro in two-dimensional environment. Furthermore, engineered myocardium tissue was constructed from isolated cells in three-dimensional collagen/Matrigel scaffolds. The identification of telocytes was performed by using histological and immunohistochemical methods. The results showed that typical telocytes are distributed among cardiomyocytes, connecting them by long telopodes. Telocytes have a typical fusiform cell body with two or three long moniliform telopodes, as main characteristics. The vital methylene blue staining showed the existence of telocytes in primary culture. Immunohistochemistry demonstrated that some c-kit or CD34 immuno-positive cells in engineered heart tissue had the morphology of telocytes, with a typical fusiform cell body and long moniliform telopodes. Also, a significant number of vimentin+ telocytes were present within engineered heart tissue. We suggest that the model of three-dimensional engineered heart tissue could be useful for the ongoing research on the functional relationships of telocytes with cardiomyocytes. Because the heart has the necessary potential of changing the muscle and non-muscle cells during the lifetime, telocytes might play an active role in the heart regeneration process. Moreover, telocytes might be a useful tool for cardiac tissue engineering.


Epigenomic consequences of immortalized plant cell suspension culture.

  • Milos Tanurdzic‎ et al.
  • PLoS biology‎
  • 2008‎

Plant cells grown in culture exhibit genetic and epigenetic instability. Using a combination of chromatin immunoprecipitation and DNA methylation profiling on tiling microarrays, we have mapped the location and abundance of histone and DNA modifications in a continuously proliferating, dedifferentiated cell suspension culture of Arabidopsis. We have found that euchromatin becomes hypermethylated in culture and that a small percentage of the hypermethylated genes become associated with heterochromatic marks. In contrast, the heterochromatin undergoes dramatic and very precise DNA hypomethylation with transcriptional activation of specific transposable elements (TEs) in culture. High throughput sequencing of small interfering RNA (siRNA) revealed that TEs activated in culture have increased levels of 21-nucleotide (nt) siRNA, sometimes at the expense of the 24-nt siRNA class. In contrast, TEs that remain silent, which match the predominant 24-nt siRNA class, do not change significantly in their siRNA profiles. These results implicate RNA interference and chromatin modification in epigenetic restructuring of the genome following the activation of TEs in immortalized cell culture.


Engineered heart tissue graft derived from somatic cell nuclear transferred embryonic stem cells improve myocardial performance in infarcted rat heart.

  • Shuanghong Lü‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT-ES]) cells to treat diseases. Nevertheless, it is controversial as NT-ES cells may pose risks in their therapeutic application. EHT from NT-ES cell-derived cardiomyocytes was generated through a series of improved techniques in a self-made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2-4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT-ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT-ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts.


Oncogenic Ras-transformed human fibroblasts exhibit differential changes in contraction and migration in 3D collagen matrices.

  • Gustavo C Menezes‎ et al.
  • Experimental cell research‎
  • 2008‎

Tractional force exerted by tissue cells in 3D collagen matrices can be utilized for matrix remodeling or cell migration. The interrelationship between these motile processes is not well understood. The current studies were carried out to test the consequences of oncogenic Ras (H-Ras(V12)) transformation on human fibroblast contraction and migration in 3D collagen matrices. Beginning with hTERT-immortalized cells, we prepared fibroblasts stably transformed with E6/E7 and with the combination HPV16 E6/E7 and H-Ras(V12). Oncogenic Ras-transformed cells lost contact inhibition of cell growth, formed colonies in soft agar and were unable to make adherens junctions. We observed no changes in the extent or growth factor dependence of collagen matrix contraction (floating or stress-relaxation) by oncogenic Ras-transformed cells. On the other hand, transformed cells in nested collagen matrices lost not only growth factor selectivity, but also cell-matrix density-dependent inhibition of migration. These findings demonstrate differential regulation of collagen matrix contraction and cell migration in 3D collagen matrices.


The Long Noncoding RNA HOTAIR Promotes Colorectal Cancer Progression by Sponging miR-197.

  • Xinyang Lu‎ et al.
  • Oncology research‎
  • 2018‎

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.


Study on Urine Metabolic Profile of Aβ25-35-Induced Alzheimer's Disease Using UHPLC-Q-TOF-MS.

  • Yuanyuan Liu‎ et al.
  • Neuroscience‎
  • 2018‎

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with no effective method for its treatment so far. The pathogenesis of AD has been reported, but the endogenous metabolic profile and disease-related biomarkers are still not clear. To better understand AD, an AD model induced by injecting β-amyloid 25-35 (Aβ 25-35) solution into bilateral hippocampus was developed on Sprague-Dawley rats. After 8 weeks of modeling, the impairment of spatial learning and memory ability in AD rats were assessed by Morris water maze task. Hematoxylin and eosin staining and immunohistochemistry were used to investigate the pathological changes of hippocampus. The neurotransmitter concentrations in the hippocampus were measured using UHPLC-TQ-MS. Urinary metabolomics based on UHPLC-Q-TOF-MS was established to delineate the alterations of endogenous metabolites in AD rats. The results showed that compared with healthy control rats, AD rats suffered from cognitive dysfunction, hippocampus damage, Aβ formation and tau phosphorylation at 8 weeks after surgery, suggesting that the Aβ25-35-induced AD model was successfully established. In addition, the levels of γ-aminobutyric acid, acetylcholine, glycine, norepinephrine, serotonin, taurine and dopamine decreased and glutamate and aspartic acid increased in hippocampal tissue of AD rats. 45 altered metabolites mainly involved in 8 metabolic pathways were identified as the endogenous biomarkers of AD. According to the analysis of the biological significance of metabolic profiles, the pathogenesis of AD was mainly due to gut microbiome dysbiosis, inhibition of energy metabolism, oxidative stress injury and loss of neuronal protective substances.


miR-300 rs12894467 polymorphism may be associated with susceptibility to primary lung cancer in the Chinese Han population.

  • Zhiqiang Liu‎ et al.
  • Cancer management and research‎
  • 2018‎

The etiology of lung cancer has been attributed to both environmental and genetic factors. In this study, we investigated the association between five miRNA gene single-nucleotide polymorphisms (SNPs) and the risk of lung cancer, and explored the interaction between genetic and environmental factors in the Han people of China, the ethnic group that represents >90% of the population of the country.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: