Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents.

  • Qi Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Polyampholyte-coated (poly(acrylic acid) (PAA)-co-3-(diethylamino)-propylamine (DEAPA)) magnetite nanoparticles (PAMNPs) have been prepared as contrasting agent used in magnetic resonance imaging (MRI). Excellent biocompatibility is required for contrasting agents used in high-resolution magnetic resonance angiography. To evaluate the biocompatibility of PAMNPs, some experiments have been conducted. The hemolysis, plasma recalcification, dynamic blood clotting, prothrombin time, inflammatory cytokine release and complement system activation assays were carried out to investigate the hemocompatibility. To evaluate the toxicity to vessel, MTT test and vascular irritation tests were conducted. Tissue toxicity test was also performed to investigate the biocompability in vivo. We also looked into the biodistribution. The results showed that PAMNPs at the working concentration (0.138 mM) present similar hemocompatibility with negative control, thus have no significant effect to vessels. PAMNPs were mainly distributed in the liver and the blood. The circulation time in blood was considerably long, with the half-time of 3.77 h in plasma. This property is advantageous for PAMNPs' use in angiography. PAMNPs could be metabolized rapidly in mice and were not observed to cause any toxic or adverse effect. In short, these results suggest that the PAMNPs have great potential to serve as safe contrast agents in magnetic resonance imaging (MRI).


NAD⁺-carrying mesoporous silica nanoparticles can prevent oxidative stress-induced energy failures of both rodent astrocytes and PC12 cells.

  • Heyu Chen‎ et al.
  • PloS one‎
  • 2013‎

To test the hypothesis that NAD(+)-carrying mesoporous silica nanoparticles (M-MSNs@NAD+) can effectively deliver NAD(+) into cells to produce cytoprotective effects.


Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect.

  • Mengchun Chen‎ et al.
  • International journal of nanomedicine‎
  • 2019‎

Purpose: Combining siRNA and other chemotherapeutic agents into one nanocarrier can overcome the multidrug resistance (MDR) phenomenon by synergistically MDR relative genes silencing and elevated chemotherapeutic activity. Most of these systems are typically fabricated through complicated procedures, which involves materials preparation, drug loading and modifications. Herein, the purpose of this study is to develop a new and fast co-delivery system of siRNA and doxorubicin for potentially synergistic cancer treatment. Methods: The co-delivery system is constructed conveniently by a stable complex consisting of doxorubicin bound to siRNA via intercalation firstly, followed by interacting with (3-Aminopropyl)triethoxysilane (APTES) electrostatically and Tetraethyl orthosilicate (TEOS) co-condensed, and the characterizations of the resultant nanocarrier are also investigated. Furthermore, this study evaluates the synergistic anti-cancer efficacy in MCF-7/MDR cells after treatment of siRNA and doxorubicin 'two in one' nanocarriers. Results: We establish a new and fast method to craft a co-delivery system of siRNA and doxorubicin with controllable and nearly uniform size, and the entire fabrication process only costs in about 10 minutes. The resultant co-delivery system presents high loading capacities of siRNA and doxorubicin, and the encapsulated doxorubicin plays a pH-responsive control release. Further, biological functionality tests of the synthesized co-delivery nanocarriers show high inhibition of P-gp protein encoded by MDR-1 gene in MCF-7/MDR cells (a variant of human breast cancer cell line with drug resistance) after transfection of these nanocarriers carrying MDR-1 siRNA and doxorubicin simultaneously, which sensitize the MCF-7/MDR cells to doxorubicin, overall leading to improved cell suppression. Conclusion: Collectively, this co-delivery system not only serves as potent therapeutics for synergistic cancer therapy, it also may facilitate the bench-to-bedside translation of combinatorial delivery system as a robust drug nanocarrier by allowing for fabricating a simply and fast nanocarrier for co-delivery of siRNA and doxorubicin with predictable high production rate.


Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold.

  • Zhiping Kuang‎ et al.
  • Genes & diseases‎
  • 2021‎

Lev/MSNs/n-HA/PU has been proved to be a novel scaffold material to treat bone defect caused by chronic osteomyelitis. We have previously identified that this material can effectively treat chronic osteomyelitis caused by Staphylococcus aureus in vivo. However, the potential mechanisms of antibacterial and osteogenic induction properties remain unclear. Thus, for osteogenesis property, immunohistochemistry, PCR, and Western blot were performed to detect the expression of osteogenic markers. Furthermore, flow cytometry and TUNEL were applied to analyze MC3T3-E1 proliferation and apoptosis. For antibacterial property, the material was co-cultivated with bacteria, bacterial colony forming units was counted and the release time of the effective levofloxacin was assayed by agar disc-diffusion test. Moreover, scanning electron microscope was applied to observe adhesion of bacteria. In terms of osteogenic induction, we found BMSCs adherently grew more prominently on Lev/MSNs/n-HA/PU. Lev/MSNs/n-HA/PU also enhanced the expression of osteogenic markers including OCN and COL1α1, as well as effectively promoted the transition from G1 phase to G2 phase. Furthermore, Lev/MSNs/n-HA/PU could reduce apoptosis of MC3T3-E1. Besides, both Lev/MSNs/n-HA/PU and n-HA/PU materials could inhibit bacterial colonies, while Lev/MSNs/n-HA/PU possessed a stronger antibacterial activities, and lower bacterial adhesion than n-HA/PU. These results illustrated that Lev/MSNs/n-HA/PU composite scaffold possess favorable compatibility in vitro, which induce osteogenic differentiation of MSCs, promote proliferation and differentiation of MC3T3-E1, and inhibit apoptosis. Moreover, clear in vitro antibacterial effect of Lev/MSNs/n-HA/PU was also observed. In summary, this study replenishes the potential of Lev/MSNs/n-HA/PU composite scaffold possess dual functions of anti-infection and enhanced osteogenesis for future clinical application.


MSU crystal deposition contributes to inflammation and immune responses in gout remission.

  • Hongchen Gu‎ et al.
  • Cell reports‎
  • 2023‎

As a prominent feature of gout, monosodium urate (MSU) crystal deposition induces gout flares, but its impact on immune inflammation in gout remission remains unclear. Using single-cell RNA sequencing (scRNA-seq), we characterize the transcription profiling of peripheral blood mononuclear cells (PBMCs) among intercritical remission gout, advanced remission gout, and normal controls. We find systemic inflammation in gout remission with MSU crystal deposition at the intercritical and advanced stages, evidenced by activated inflammatory pathways, strengthened inflammatory cell-cell interactions, and elevated arachidonic acid metabolic activity. We also find increased HLA-DQA1high classic monocytes and PTGS2high monocytes in advanced gout and overactivated CD8+ T cell subtypes in intercritical and advanced gout. Additionally, the osteoclast differentiation pathway is significantly enriched in monocytes, T cells, and B cells from advanced gout. Overall, we demonstrate systemic inflammation and distinctive immune responses in gout remission with MSU crystal deposition, allowing further exploration of the underlying mechanism and clinical significance in conversion from intercritical to advanced stage.


Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy.

  • Yijie Chen‎ et al.
  • International journal of nanomedicine‎
  • 2015‎

Therapeutic antiangiogenesis strategies have demonstrated significant antitumor efficacy in ovarian cancer. Recently, RNA interference (RNAi) has come to be regarded as a promising technology for treatment of disease, especially cancer. In this study, vascular endothelial growth factor (VEGF)-small interfering RNA (siRNA) was encapsulated into a magnetic mesoporous silica nanoparticle (M-MSN)-based, polyethylenimine (PEI)-capped, polyethylene glycol (PEG)-grafted, fusogenic peptide (KALA)-functionalized siRNA delivery system, termed M-MSN_VEGF siRNA@PEI-PEG-KALA, which showed significant effectiveness with regard to VEGF gene silencing in vitro and in vivo. The prepared siRNA delivery system readily exhibited cellular internalization and ease of endosomal escape, resulting in excellent RNAi efficacy without associated cytotoxicity in SKOV3 cells. In in vivo experiments, notable retardation of tumor growth was observed in orthotopic ovarian tumor-bearing mice, which was attributed to significant inhibition of angiogenesis by systemic administration of this nanocarrier. No obvious toxic drug responses were detected in major organs. Further, the magnetic core of M-MSN_VEGF siRNA@PEI-PEG-KALA proved capable of probing the site and size of the ovarian cancer in mice on magnetic resonance imaging. Collectively, the results demonstrate that an M-MSN-based delivery system has potential to serve as a carrier of siRNA therapeutics in ovarian cancer.


Programmable design of isothermal nucleic acid diagnostic assays through abstraction-based models.

  • Gaolian Xu‎ et al.
  • Nature communications‎
  • 2022‎

Accelerating the design of nucleic acid amplification methods remains a critical challenge in the development of molecular tools to identify biomarkers to diagnose both infectious and non-communicable diseases. Many of the principles that underpin these mechanisms are often complex and can require iterative optimisation. Here we focus on creating a generalisable isothermal nucleic acid amplification methodology, describing the systematic implementation of abstraction-based models for the algorithmic design and application of assays. We demonstrate the simplicity, ease and flexibility of our approach using a software tool that provides amplification schemes de novo, based upon a user-input target sequence. The abstraction of reaction network predicts multiple reaction pathways across different strategies, facilitating assay optimisation for specific applications, including the ready design of multiplexed tests for short nucleic acid sequence miRNAs or for difficult pathogenic targets, such as highly mutating viruses.


Plasma biomarker profiles and the correlation with cognitive function across the clinical spectrum of Alzheimer's disease.

  • Zhenxu Xiao‎ et al.
  • Alzheimer's research & therapy‎
  • 2021‎

Plasma biomarkers showed a promising value in the disease diagnosis and management of Alzheimer's disease (AD). However, profiles of the biomarkers and the associations with cognition across a spectrum of cognitive stages have seldom been reported.


Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging.

  • Sihan Xue‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

In this study, a novel magnetic resonance imaging (MRI)/computed tomography (CT)/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs). Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs) directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2) markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/CT/fluorescence trimodal imaging.


Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells.

  • Qian Liu‎ et al.
  • International journal of nanomedicine‎
  • 2012‎

Using nanoparticles to deliver chemotherapeutics offers new opportunities for cancer therapy, but challenges still remain when they are used for the delivery of multiple drugs, especially for the synchronous delivery of hydrophilic and hydrophobic drugs in combination therapies. In this paper, we developed an approach to deliver hydrophilic-hydrophobic anticancer drug pairs by employing magnetic mesoporous silica nanoparticles (MMSNs). We prepared 50 nm-sized MMSNs with uniform pore size and evaluated their capability for the loading of two combinations of chemotherapeutics, namely doxorubicin-paclitaxel and doxorubicin-rapamycin, by means of sequential adsorption from the aqueous solution of doxorubicin and nonaqueous solutions of paclitaxel or rapamycin. Experimental results showed that the present strategy successfully realized the co-loading of hydrophilic and hydrophobic drugs with high-loading content and widely tunable ratio range. We elaborate on the theory behind the molecular interaction between the silica hydroxyl groups and drug molecules, which underlie the controllable loading, and the subsequent release of the drug pairs. Then we demonstrate that the multidrug-loaded MMSNs could be easily internalized by A549 human pulmonary adenocarcinoma cells, and produce enhanced tumor cell apoptosis and growth inhibition as compared to single-drug loaded MMSNs. Our study thus realized simultaneous and dose-tunable delivery of hydrophilic and hydrophobic drugs, which were endowed with improved anticancer efficacy. This strategy could be readily extended to other chemotherapeutic combinations and might have clinically translatable significance.


Sequence terminus dependent PCR for site-specific mutation and modification detection.

  • Gaolian Xu‎ et al.
  • Nature communications‎
  • 2023‎

The detection of changes in nucleic acid sequences at specific sites remains a critical challenge in epigenetics, diagnostics and therapeutics. To date, such assays often require extensive time, expertise and infrastructure for their implementation, limiting their application in clinical settings. Here we demonstrate a generalizable method, named Specific Terminal Mediated Polymerase Chain Reaction (STEM-PCR) for the detection of DNA modifications at specific sites, in a similar way as DNA sequencing techniques, but using simple and widely accessible PCR-based workflows. We apply the technique to both for site-specific methylation and co-methylation analysis, importantly using a bisulfite-free process - so providing an ease of sample processing coupled with a sensitivity 20-fold better than current gold-standard techniques. To demonstrate the clinical applicability through the detection of single base mutations with high sensitivity and no-cross reaction with the wild-type background, we show the bisulfite-free detection of SEPTIN9 and SFRP2 gene methylation in patients (as key biomarkers in the prognosis and diagnosis of tumours).


Mannose and Hyaluronic Acid Dual-Modified Iron Oxide Enhances Neoantigen-Based Peptide Vaccine Therapy by Polarizing Tumor-Associated Macrophages.

  • Ying Nie‎ et al.
  • Cancers‎
  • 2022‎

Neoantigen-based cancer vaccine therapy is a breakthrough in the field of immunotherapy. However, it is difficult for vaccines against neoantigens to overcome the immunosuppressive microenvironment, where tumor-associated macrophages (TAMs) play a significant role. Herein, we report an iron oxide nanoparticle modified with hyaluronic acid and mannose to reshape the tumor microenvironment by targeting and repolarizing TAMs from protumor M2 to antitumor M1 phenotype. Mannose decoration could confer the nanoparticle-enhanced TAM targeting ability, while hyaluronic acid and iron oxide could repolarize M2-like macrophages both in vitro and in vivo. Combined with antigenic peptides, this nanovaccine could significantly increase the infiltration of CD8+ T cells into tumor tissue and strongly activate dendritic cells in sentinel lymph nodes. Finally, we used the dual-modified nanoparticles to first convert the tumor microenvironment and then the nanovaccine administration in a TC1 tumor model to further enhance efficacy. This strategy inhibited tumor growth and achieved a 40% cure rate in mice (two of five). In summary, this study provides a potent and rationally designed nanoadjuvant to enhance antitumor efficiency and facilitate delivery of neoantigen vaccines by repolarizing TAMs and harmonizing immune cells.


Single-cell transcriptomics reveals variations in monocytes and Tregs between gout flare and remission.

  • Hanjie Yu‎ et al.
  • JCI insight‎
  • 2023‎

Gout commonly manifests as a painful, self-limiting inflammatory arthritis. Nevertheless, the understanding of the inflammatory and immune responses underlying gout flares and remission remains ambiguous. Here, based on single-cell RNA-Seq and an independent validation cohort, we identified the potential mechanism of gout flare, which likely involves the upregulation of HLA-DQA1+ nonclassical monocytes and is related to antigen processing and presentation. Furthermore, Tregs also play an essential role in the suppressive capacity during gout remission. Cell communication analysis suggested the existence of altered crosstalk between monocytes and other T cell types, such as Tregs. Moreover, we observed the systemic upregulation of inflammatory and cytokine genes, primarily in classical monocytes, during gout flares. All monocyte subtypes showed increased arachidonic acid metabolic activity along with upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2). We also detected a decrease in blood arachidonic acid and an increase in leukotriene B4 levels during gout flares. In summary, our study illustrates the distinctive immune cell responses and systemic inflammation patterns that characterize the transition from gout flares to remission, and it suggests that blood monocyte subtypes and Tregs are potential intervention targets for preventing recurrent gout attacks and progression.


Highly sensitive magnetite nano clusters for MR cell imaging.

  • Mingli Li‎ et al.
  • Nanoscale research letters‎
  • 2012‎

High sensitivity and suitable sizes are essential for magnetic iron oxide contrast agents for cell imaging. In this study, we have fabricated highly MR sensitive magnetite nanoclusters (MNCs) with tunable sizes. These clusters demonstrate high MR sensitivity. Especially, water suspensions of the MNCs with average size of 63 nm have transverse relaxivity as high as 630 s-1mM-1, which is among the most sensitive iron oxide contrast agents ever reported. Importantly, such MNCs have no adverse effects on cells (RAW 264.7). When used for cell imaging, they demonstrate much higher efficiency and sensitivity than those of SHU555A (Resovist), a commercially available contrast agent, both in vitro and in vivo, with detection limits of 3,000 and 10,000 labeled cells, respectively. The studied MNCs are sensitive for cell imaging and promising for MR cell tracking in clinics.


Strategy to prevent cardiac toxicity induced by polyacrylic acid decorated iron MRI contrast agent and investigation of its mechanism.

  • Hao Fu‎ et al.
  • Biomaterials‎
  • 2019‎

Polyelectrolyte modified iron oxide nanoparticles have great potential applications for clinical magnetic resonance imaging (MRI) and anemia treatments, however, possible associated heart toxicity is rarely reported. Here, polyacrylic acid (PAA)-coated Fe3O4 nanoparticles (PION) were synthesized and lethal reactions appeared when it was applied in vivo. The investigation of underlying mechanism showed that PION could break electrolyte balance and further resulted in serious heart failure, which was observed under color doppler ultrasound and dynamic vector blood flow technique. The results demonstrated that PION had a strong absorption tendency for divalent ions and the maximum tolerated dose (MTD) was lower than 100 mg/kg. From electrocardiography (ECG), PION presented an obvious impact on CaV1.2 ion channel, which leading to fatal arrhythmia. An appropriate solution for preventing this deadly effect was pre-chelation Ca2+ (n (Ca): n (COOH) = 3: 8) to PION (PION-Ca), which displayed much higher cardiac and electrophysiological safety when sealing the binding point of divalent cation ions with PAA. The injection in Beagle dogs further confirmed the safety of PION-Ca. This study explored the mechanism and offered a solution for cardiac toxicity induced by PAA-coated nanoparticles, which guides for enhancing the safety of such polyelectrolyte decorated nanoparticles and provides assurance for clinical applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: