Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation.

  • Xiaodong Lin‎ et al.
  • Scientific reports‎
  • 2016‎

The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.


An NMR-Based Metabolomic Approach to Unravel the Preventive Effect of Water-Soluble Extract from Dendrobium officinale Kimura & Migo on Streptozotocin-Induced Diabetes in Mice.

  • Hong Zheng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Dendrobium officinale Kimura & Migo (D. officinale) is a precious herbal medicine. In this study, we investigated metabolic mechanism underlying the effect of D. officinale water extract (DOWE) on diabetes prevention in mice after streptozotocin (STZ) exposure using NMR-based metabolomics. Interestingly, we found a decrease in blood glucose and an increase in liver glycogen in mice pretreated with DOWE after STZ exposure. The DOWE pretreatment significantly increased citrate and glutamine in the serum as well as creatine, alanine, leucine, isoleucine, valine, glutamine, glutathione and taurine in the liver of STZ-treated mice. Furthermore, serum glucose was significantly negatively correlated with citrate, pyruvate, alanine, isoleucine, histidine and glutamine in the serum as well as alanine and taurine in the liver. These findings suggest that the effect of DOWE on diabetes prevention may be linked to increases in liver glycogen and taurine as well as the up-regulation of energy and amino acid metabolism.


Early Effect of Amyloid β-Peptide on Hippocampal and Serum Metabolism in Rats Studied by an Integrated Method of NMR-Based Metabolomics and ANOVA-Simultaneous Component Analysis.

  • Yao Du‎ et al.
  • BioMed research international‎
  • 2017‎

Amyloid β (Aβ) deposition has been implicated in the pathogenesis of Alzheimer's disease. However, the early effect of Aβ deposition on metabolism remains unclear. In the present study, thus, we explored the metabolic changes in the hippocampus and serum during first 2 weeks of Aβ25-35 injection in rats by using an integrated method of NMR-based metabolomics and ANOVA-simultaneous component analysis (ASCA). Our results show that Aβ25-35 injection, time, and their interaction had statistically significant effects on the hippocampus and serum metabolome. Furthermore, we identified key metabolites that mainly contributed to these effects. After Aβ25-35 injection from 1 to 2 weeks, the levels of lactate, N-acetylaspartate, creatine, and taurine were decreased in rat hippocampus, while an increase in lactate and decreases in LDL/VLDL and glucose were observed in rat serum. Therefore, we suggest that the reduction in energy and lipid metabolism as well as an increase in anaerobic glycolysis may occur at the early stage of Aβ25-35 deposition.


High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism.

  • Xi Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by ¹H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine) as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.


High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism.

  • Minjiang Chen‎ et al.
  • BioMed research international‎
  • 2016‎

Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.


Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps.

  • Hong Zheng‎ et al.
  • Oncotarget‎
  • 2016‎

Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.


Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders.

  • Hong Zheng‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2017‎

Type 2 diabetes has been associated with cognitive decline, but its metabolic mechanism remains unclear. In the present study, we attempted to investigate brain region-specific metabolic changes in db/db mice with cognitive decline and explore the potential metabolic mechanism linking type 2 diabetes and cognitive decline. We analyzed the metabolic changes in seven brain regions of two types of mice (wild-type mice and db/db mice with cognitive decline) using a 1H NMR-based metabolomic approach. Then, a mixed-model analysis was used to evaluate the effects of mice type, brain region, and their interaction on metabolic changes. Compared with the wild-type mice, the db/db mice with cognitive decline had significant increases in lactate, glutamine (Gln) and taurine as well as significant decreases in alanine, aspartate, choline, succinate, γ-Aminobutyric acid (GABA), glutamate (Glu), glycine, N-acetylaspartate, inosine monophosphate, adenosine monophosphate, adenosine diphosphate, and nicotinamide adenine dinucleotide. Brain region-specific metabolic differences were also observed between these two mouse types. In addition, we found significant interaction effects of mice type and brain region on creatine/phosphocreatine, lactate, aspartate, GABA, N-acetylaspartate and taurine. Based on metabolic pathway analysis, the present study suggests that cognitive decline in db/db mice might be linked to a series of brain region-specific metabolic changes, involving an increase in anaerobic glycolysis, a decrease in tricarboxylic acid (TCA) and Gln-Glu/GABA cycles as well as a disturbance in lactate-alanine shuttle and membrane metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: