Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Inhibition of lysyl oxidase-like 1 (LOXL1) expression arrests liver fibrosis progression in cirrhosis by reducing elastin crosslinking.

  • Wenshan Zhao‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2018‎

Mature crosslinked-poly-elastin deposition has been found to be associated with liver fibrosis. However, the regulation of crosslinked/insoluble elastin in liver fibrosis remains largely unknown. Here, we investigated the contribution of lysyl oxidases (LOXs) family, mediated elastin crosslinking, to liver fibrogenesis. We established carbon tetrachloride (CCl4)-induced liver fibrotic and cirrhotic models and found that crosslinked/insoluble elastin levels spiked only in cirrhosis stage during disease progression, in comparison to collagen Ι levels which increased continuously though all stages. Among the LOXs family members, only LOX-like 1 (LOXL1) levels were coincident with the appearance of crosslinked/insoluble elastin. These coincidences included that LOXL1 expression increased (34 fold) in cirrhosis, localized with α-smooth muscle actin (SMA) and was absent in normal and fibrotic livers. In LX-2 cells, LOXL1 silencing arrested expression of α-SMA, elastin and collagen Ι. Our previously characterized adeno-associated vector (AAV) 2/8 shRNA was shown to effectively downregulate LOXL1 expression in CCl4 induced fibrosis mice models. These resulted in delicate and thinner septa and less crosslinked elastin, with a 58% loss of elastin area and 51% decrease of collagen area. Our findings strongly suggested that elastin crosslinking and LOXL1 were co-associated with liver cirrhosis, while selective inhibition of LOXL1 arrested disease progression by reducing crosslinking of elastin.


Therapeutic effects of serum extracellular vesicles in liver fibrosis.

  • Li Chen‎ et al.
  • Journal of extracellular vesicles‎
  • 2018‎

The lack of approved therapies for hepatic fibrosis seriously limits medical management of patients with chronic liver disease. Since extracellular vesicles (EVs) function as conduits for intercellular molecular transfer, we investigated if EVs from healthy individuals have anti-fibrotic properties. Hepatic fibrogenesis or fibrosis in carbon tetrachloride (CCl4)- or thioacetic acid-induced liver injury models in male or female mice were suppressed by serum EVs from normal mice (EVN) but not from fibrotic mice (EVF). CCl4-treated mice undergoing EVN therapy also exhibited reduced levels of hepatocyte death, inflammatory infiltration, circulating AST/ALT levels and hepatic or circulating pro-inflammatory cytokines. Hepatic histology, liver function tests or circulating proinflammatory cytokine levels were unaltered in control mice receiving EVN. As determined using PKH26-labelled EVN, principal target cells included hepatic stellate cells (HSC; a normally quiescent fibroblastic cell that undergoes injury-induced activation and produces fibrosis during chronic injury) or hepatocytes which showed increased EVN binding after, respectively, activation or exposure to CCl4. In vitro, EVN decreased proliferation and fibrosis-associated molecule expression in activated HSC, while reversing the inhibitory effects of CCl4 or ethanol on hepatocyte proliferation. In mice, microRNA-34c, -151-3p, -483-5p, -532-5p and -687 were more highly expressed in EVN than EVF and mimics of these microRNAs (miRs) individually suppressed fibrogenic gene expression in activated HSC. A role for these miRs in contributing to EVN actions was shown by the ability of their corresponding antagomirs to individually and/or collectively block the therapeutic effects of EVN on activated HSC or injured hepatocytes. Similarly, the activated phenotype of human LX-2 HSC was attenuated by serum EVs from healthy human subjects and contained higher miR-34c, -151-3p, -483-5p or -532-5p than EVs from hepatic fibrosis patients. In conclusion, serum EVs from normal healthy individuals are inherently anti-fibrogenic and anti-fibrotic, and contain microRNAs that have therapeutic actions in activated HSC or injured hepatocytes. Abbreviations: ALT: alanine aminotransferase; AST: aspartate aminotransferase; CCl4: carbon tetrachloride; CCN2: connective tissue growth factor; E: eosin; EGFP: enhanced green fluorescent protein; EVs: extracellular vesicles; EVF: serum EVs from mice with experimental hepatic fibrosis; EVN: serum EVs from normal mice; H: hematoxylin; HSC: hepatic stellate cell; IHC: immunohistochemistry; IL: interleukin; MCP-1: monocyte chemotactic protein-1; miR: microRNA; mRNA: messenger RNA; NTA: nanoparticle tracking analysis; PCNA: proliferating cell nuclear antigen; qRT-PCR: quantitative real-time polymerase chain reaction; SDS-PAGE: sodium dodecyl sulphate - polyacrylamide gel electrophoresis; αSMA: alpha smooth muscle actin; TAA: thioacetic acid; TG: transgenic; TGF-β: transforming growth factor beta; TEM: transmission electron microscopy; TNFα: tumour necrosis factor alpha.


Fibroblast Activation Protein Activates Macrophages and Promotes Parenchymal Liver Inflammation and Fibrosis.

  • Ai-Ting Yang‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2023‎

Fibroblast activation protein (FAP) is expressed on activated fibroblast. Its role in fibrosis and desmoplasia is controversial, and data on pharmacological FAP inhibition are lacking. We aimed to better define the role of FAP in liver fibrosis in vivo and in vitro.


Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice.

  • Min Cong‎ et al.
  • International journal of molecular medicine‎
  • 2017‎

Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation.


Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.

  • Wei Chen‎ et al.
  • Gene‎
  • 2017‎

Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear.


Identification of potential modifier genes in Chinese patients with Wilson disease.

  • Donghu Zhou‎ et al.
  • Metallomics : integrated biometal science‎
  • 2022‎

The mutations in modifier genes may contribute to some inherited diseases including Wilson disease (WD). This study was designed to identify potential modifier genes that contribute to WD. A total of 10 WD patients with single or no heterozygous ATP7B mutations were recruited for whole-exome sequencing (WES). Five hundred and thirteen candidate genes, of which the genetic variants present in at least two patients, were identified. In order to clarify which proteins might be involved in copper transfer or metabolism processes, the isobaric tags for relative and absolute quantitation (iTRAQ) was performed to identify the differentially expressed proteins between normal and CuSO4-treated cell lines. Thirteen genes/proteins were identified by both WES and iTRAQ, indicating that disease-causing variants of these genes may actually contribute to the aberrant copper ion accumulation. Additionally, the c.86C > T (p.S29L) mutation in the SLC31A2 gene (coding CTR2) has a relative higher frequency in our cohort of WD patients (6/191) than reported (0.0024 in gnomAD database) in our healthy donors (0/109), and CTR2S29L leads to increased intracellular Cu concentration and Cu-induced apoptosis in cultured cell lines. In conclusion, the WES and iTRAQ approaches successfully identified several disease-causing variants in potential modifier genes that may be involved in the WD phenotype.


Matrix metalloproteinase-1 induction by diethyldithiocarbamate is regulated via Akt and ERK/miR222/ETS-1 pathways in hepatic stellate cells.

  • Tianhui Liu‎ et al.
  • Bioscience reports‎
  • 2016‎

Matrix metalloproteinase-1 (MMP-1) plays an important role in fibrolysis by degrading excessively deposited collagen I and III. We previously demonstrated that diethyldithiocarbamate (DDC) up-regulates MMP-1 in hepatic stellate cells via the ERK1/2 and Akt signalling pathways. In the current study, we attempted to further explore the molecular mechanisms involved in the regulation of MMP-1. We treated a co-cultured system that included hepatocytes (C3A) and hepatic stellate cells (LX-2) with DDC. The data revealed that the transcriptional factor ETS-1, which is an important regulator of MMP-1, was up-regulated in LX-2 cells following DDC treatment. Furthermore, the up-regulation of MMP-1 by DDC has been abrogated through employing si-ETS-1 to block expression of ETS-1. We found that DDC significantly inhibited the expression of miR-222 in LX-2 cells. We transfected miR-222 mimic into LX-2 cells and then co-cultured the cells with C3A. The up-regulation of ETS-1 and MMP-1 in LX-2 cells treated with DDC were inhibited after miR-222 mimic transfection. These data indicate that DDC up-regulated MMP-1 in LX-2 cells through the miR-222/ETS-1 pathway. Finally, we treated the co-cultured system with an Akt inhibitor (T3830) and an ERK1/2 inhibitor (U0126). Both T3830 and U0126 blocked the suppression of miR-222 by DDC in LX-2. Collectively, these data indicate that DDC up-regulated MMP-1 in LX-2 cells through the Akt and ERK/miR-222/ETS-1 pathways. Our study provides experimental data that will aid the control of the process of fibrolysis in liver fibrosis prevention and treatment.


Mesenchymal stem cells protect against acetaminophen hepatotoxicity by secreting regenerative cytokine hepatocyte growth factor.

  • Ping Wang‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

Acetaminophen (APAP) overdose is a major cause of the morbidity of acute liver failure. The current clinically approved treatment for APAP poisoning, N-acetylcysteine (NAC), has a limited therapeutic window, and prolonged treatment with NAC delays liver regeneration. Mesenchymal stem cells (MSCs) also have therapeutic effects on APAP-induced mouse liver failure, but whether the effects are comparable to those of NAC has not been determined, and the mechanism still needs further exploration.


Meta-Analysis of Antinuclear Antibodies in the Diagnosis of Antimitochondrial Antibody-Negative Primary Biliary Cholangitis.

  • Qian Zhang‎ et al.
  • Gastroenterology research and practice‎
  • 2019‎

The diagnostic value of antinuclear antibodies (ANAs) including anti-gp210 and anti-sp100 for primary biliary cholangitis/cirrhosis (PBC) has been widely reported. However, their diagnostic performances for antimitochondrial antibody- (AMA-) negative PBC were less well elucidated. Therefore, the aim of the current meta-analysis was to evaluate the diagnostic accuracy of ANAs in patients with AMA-negative PBC.


Repopulating Kupffer cells originate directly from hematopoietic stem cells.

  • Xu Fan‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

Kupffer cells (KCs) originate from yolk-sac progenitors before birth. Throughout adulthood, they self-maintain independently from the input of circulating monocytes (MOs) at a steady state and are replenished within 2 weeks after having been depleted, but the origin of repopulating KCs in adults remains unclear. The current paradigm dictates that repopulating KCs originate from preexisting KCs or monocytes, but there remains a lack of fate-mapping evidence.


A multimodal international collaborative clinical research training program in China.

  • Qian Zhang‎ et al.
  • Medical education online‎
  • 2019‎

Background: There is a strong need to include training of research methods in training programs for physicians. International clinical research training programs (CRTP) that comprehensively introduce the methodology of clinical research and combined with practice should be a priority. However, few studies have reported a multimodal international CRTP that provides clinicians with an introduction to the quantitative and methodological principles of clinical research. Objective: This manuscript is intended to comprehensively describe the development process and the structure of this multimodal training program. Methods: The CRTP was comprised of three distinct, sequential learning components: part 1 - a six-week online eLearning self-study; part 2 - a series of three weekly interactive synchronous webinars conducted between Durham, North Carolina, USA and Beijing, China; and part 3 - a five-day in-person workshop held at Beijing Friendship Hospital, Capital Medical University (BFH-CMU). Self-assessment quiz scores and participation rates were used to evaluate effectiveness of the training program. Participants' demographic characteristics, research experience, satisfaction and feedback on the program were collected using questionnaires. Results: A total of 50 participants joined the CRTP. Forty-four participants (88%) completed the program satisfaction questionnaires. The average quiz score of the six eLearning units varied from 31% to 73%. Among the three components of the program, the online eLearning self-study was felt to be the most challenging. Thirty-nine (89%) of the surveyed respondents were satisfied with all components of the training program. Among the respondents, 43 (98%) felt the training was helpful in preparing them for future clinical research projects and expressed willingness to recommend the program to other colleagues. Conclusions: We established a multimodal international collaborative training program. The program demonstrated acceptable participation rates and high satisfaction among Chinese clinicians. It provides a model that may be used by others developing similar international clinical research training programs for physicians.


Mutation inactivation of Nijmegen breakage syndrome gene (NBS1) in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

  • Yan Wang‎ et al.
  • PloS one‎
  • 2013‎

Nijmegen breakage syndrome (NBS) with NBS1 germ-line mutation is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition. The NBS1 gene codes for a protein, Nbs1(p95/Nibrin), involved in the processing/repair of DNA double-strand breaks. Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with several genomic alterations. Recent studies have shown that heterozygous NBS1 mice exhibited a higher incidence of HCC than did wild-type mice. The objective of the present study is to assess whether NBS1 mutations play a role in the pathogenesis of human primary liver cancer, including HBV-associated HCC and intrahepatic cholangiocarcinoma (ICC). Eight missense NBS1 mutations were identified in six of 64 (9.4%) HCCs and two of 18 (11.1%) ICCs, whereas only one synonymous mutation was found in 89 control cases of cirrhosis and chronic hepatitis B. Analysis of the functional consequences of the identified NBS1 mutations in Mre11-binding domain showed loss of nuclear localization of Nbs1 partner Mre11, one of the hallmarks for Nbs1 deficiency, in one HCC and two ICCs with NBS1 mutations. Moreover, seven of the eight tumors with NBS1 mutations had at least one genetic alteration in the TP53 pathway, including TP53 mutation, MDM2 amplification, p14ARF homozygous deletion and promoter methylation, implying a synergistic effect of Nbs1 disruption and p53 inactivation. Our findings provide novel insight on the molecular pathogenesis of primary liver cancer characterized by mutation inactivation of NBS1, a DNA repair associated gene.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: