Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Multistage-responsive nanovehicle to improve tumor penetration for dual-modality imaging-guided photodynamic-immunotherapy.

  • Yi Feng‎ et al.
  • Biomaterials‎
  • 2021‎

The exploration of an intelligent multifunctional imaging-guided therapeutic platform is of great significance because of its ideal delivery efficiency and controlled release. In this work, a tumor microenvironment (TME)-responsive nanocarrier (denoted as MB@MSP) is designed for on-demand, sequentially release of a short D-peptide antagonist of programmed cell death-ligand 1 (named as PDPPA-1) and a photosensitizer methylene blue (MB). Fe3O4-Au located in the core of MB@MSP is used as a magnetic resonance imaging and micro-computed tomography imaging contrast agent for noninvasive diagnosis of solid tumors and simultaneous monitoring of drug delivery. The PDPPA-1 coated on MB@MSP can be shed due to the cleavage of the peptide substrate by matrix metalloproteinase-2 (MMP-2) that is highly expressed in the tumor stroma, and disulfide bonding is further broken when it encounters high levels of glutathione (GSH) in TME, which finally leads to significant size reduction and charge-reversal. These transitions facilitate penetration and uptake of nanocarriers against tumors. Noticeably, the released PDPPA-1 can block the immune checkpoint to create an environment that favors the activation of cytotoxic T lymphocytes and augment the antitumor immune response elicited by photodynamic therapy, thus significantly improving therapeutic outcomes. Studies of the underlying mechanisms suggest that the designed MMP-2 and GSH-sensitive delivery system not only induce apoptosis of tumor cells but also modulate the immunosuppressive tumor microenvironment to eventually augment the suppression tumor metastasis effect of CD8+ cytotoxic T cells. Overall, the visualization of the therapeutic processes with comprehensive information renders MB@MSP an intriguing platform to realize the combined treatment of metastatic tumors.


Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics.

  • Chunhui Wu‎ et al.
  • Biomaterials‎
  • 2019‎

Currently, photoimmunotherapy based on a theranostic nanoplatform emerges as a promising modality in advanced cancer therapy. In this study, a new type of versatile nanoassemblies (denoted as PC@GCpD(Gd)) was rationally designed by integrating the polydopamine stabilized graphene quantum dots (GQD)-photosensitizer nanocomposites (denoted as GCpD), immunostimulatory polycationic polymer/CpG oligodeoxynucleotide (CpG ODN) nanoparticles (denoted as PC) and Gd3+/Cy3 imaging probes for dual magnetic resonance/fluorescence imaging-guided photoimmunotherapy. PC@GCpD(Gd) effectively killed the tumor cells through the amplified photothermal and photodynamic effects mediated by GCpD, and contemporaneously delivered CpG ODN to the targeted endosomal Toll-like receptor 9 (TLR9) to continuously stimulate the secretion of proinflammatory cytokines and the maturation of dendritic cells, thereby resulting in the activation and infiltration of T lymphocytes. As a result, PC@GCpD(Gd) achieved robust inhibition efficiency to almost completely suppress the EMT6 murine mammary cancer model under laser irradiation, implying the superior synergy of combined photoimmunotherapy. Moreover, the in vivo delivery and biodistribution of PC@GCpD(Gd) could be tracked using the high-quality bimodal magnetic resonance imaging/fluorescence imaging. This study highlighted the potent prospect of hybrid PC@GCpD(Gd) nanoassemblies for precise cancer photoimmunotherapy with a cascading effect.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: