Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis.

  • Akira Iwase‎ et al.
  • Current biology : CB‎
  • 2011‎

Many multicellular organisms have remarkable capability to regenerate new organs after wounding. As a first step of organ regeneration, adult somatic cells often dedifferentiate to reacquire cell proliferation potential, but mechanisms underlying this process remain unknown in plants. Here we show that an AP2/ERF transcription factor, WOUND INDUCED DEDIFFERENTIATION 1 (WIND1), is involved in the control of cell dedifferentiation in Arabidopsis. WIND1 is rapidly induced at the wound site, and it promotes cell dedifferentiation and subsequent cell proliferation to form a mass of pluripotent cells termed callus. We further demonstrate that ectopic overexpression of WIND1 is sufficient to establish and maintain the dedifferentiated status of somatic cells without exogenous auxin and cytokinin, two plant hormones that are normally required for cell dedifferentiation. In vivo imaging of a synthetic cytokinin reporter reveals that wounding upregulates the B-type ARABIDOPSIS RESPONSE REGULATOR (ARR)-mediated cytokinin response and that WIND1 acts via the ARR-dependent signaling pathway to promote cell dedifferentiation. This study provides novel molecular insights into how plants control cell dedifferentiation in response to wounding.


Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

  • Ryuma Matsubara‎ et al.
  • PloS one‎
  • 2015‎

The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.


Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice.

  • Xian Jun Song‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Grain weight is an important crop yield component; however, its underlying regulatory mechanisms are largely unknown. Here, we identify a grain-weight quantitative trait locus (QTL) encoding a new-type GNAT-like protein that harbors intrinsic histone acetyltransferase activity (OsglHAT1). Our genetic and molecular evidences pinpointed the QTL-OsglHAT1's allelic variations to a 1.2-kb region upstream of the gene body, which is consistent with its function as a positive regulator of the traits. Elevated OsglHAT1 expression enhances grain weight and yield by enlarging spikelet hulls via increasing cell number and accelerating grain filling, and increases global acetylation levels of histone H4. OsglHAT1 localizes to the nucleus, where it likely functions through the regulation of transcription. Despite its positive agronomical effects on grain weight, yield, and plant biomass, the rare allele elevating OsglHAT1 expression has so far escaped human selection. Our findings reveal the first example, to our knowledge, of a QTL for a yield component trait being due to a chromatin modifier that has the potential to improve crop high-yield breeding.


Imaging of Metastatic Cancer Cells in Sentinel Lymph Nodes using Affibody Probes and Possibility of a Theranostic Approach.

  • Makoto Tsuchimochi‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The accurate detection of lymph node metastases is essential for treatment success in early-stage malignant cancer. Sentinel lymph node (SLN) biopsy is the most effective procedure for detecting small or micrometastases that are undetectable by conventional imaging modalities. To demonstrate a new approach for developing a more efficient SLN biopsy procedure, we reported a two-stage imaging method combining lymphoscintigraphy and near-infrared (NIR) fluorescence imaging to depict metastatic cancer cells in SLNs in vivo. Furthermore, the theranostic potential of the combined procedure was examined by cell culture and xenograft mouse model. Anti-HER2 and anti-epidermal growth factor receptor (EGFR) affibody probes were used for NIR fluorescence imaging. Strong NIR fluorescence signal intensity of the anti-EGFR affibody probe was observed in SAS cells (EGFR positive). Radioactivity in the SLNs was clearly observed in the in vivo studies. High anti-EGFR affibody NIR fluorescence intensity was observed in the metastatic lymph nodes in mice. The addition of the IR700-conjugated anti-EGFR affibody to the culture medium decreased the proliferation of SAS cells. Decreased proliferation was shown in Ki-67 immunohistochemistry in xenograft tumors. Our data suggest that a two-stage combined imaging method using lymphoscintigraphy and affibody probes may offer the direct visualization of metastatic lymph nodes as an easily applied technique in SLN biopsy. Although further animal studies are required to assess the effect of treating lymphatic metastasis in this approach, our study results provide a foundation for the further development of this promising imaging and treatment strategy for earlier lymph node metastasis detection and treatment.


Chromatin interacting factor OsVIL2 increases biomass and rice grain yield.

  • Jungil Yang‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

Grain number is an important agronomic trait. We investigated the roles of chromatin interacting factor Oryza sativa VIN3-LIKE 2 (OsVIL2), which controls plant biomass and yield in rice. Mutations in OsVIL2 led to shorter plants and fewer grains whereas its overexpression (OX) enhanced biomass production and grain numbers when compared with the wild type. RNA-sequencing analyses revealed that 1958 genes were up-regulated and 2096 genes were down-regulated in the region of active division within the first internodes of OX plants. Chromatin immunoprecipitation analysis showed that, among the downregulated genes, OsVIL2 was directly associated with chromatins in the promoter region of CYTOKININ OXIDASE/DEHYDROGENASE2 (OsCKX2), a gene responsible for cytokinin degradation. Likewise, active cytokinin levels were increased in the OX plants. We conclude that OsVIL2 improves the production of biomass and grain by suppressing OsCKX2 chromatin.


Auxin decreases chromatin accessibility through the TIR1/AFBs auxin signaling pathway in proliferative cells.

  • Junko Hasegawa‎ et al.
  • Scientific reports‎
  • 2018‎

Chromatin accessibility is closely associated with chromatin functions such as gene expression, DNA replication, and maintenance of DNA integrity. However, the relationship between chromatin accessibility and plant hormone signaling has remained elusive. Here, based on the correlation between chromatin accessibility and DNA damage, we used the sensitivity to DNA double strand breaks (DSBs) as an indicator of chromatin accessibility and demonstrated that auxin regulates chromatin accessibility through the TIR1/AFBs signaling pathway in proliferative cells. Treatment of proliferating plant cells with an inhibitor of the TIR1/AFBs auxin signaling pathway, PEO-IAA, caused chromatin loosening, indicating that auxin signaling functions to decrease chromatin accessibility. In addition, a transcriptome analysis revealed that several histone H4 genes and a histone chaperone gene, FAS1, are positively regulated through the TIR1/AFBs signaling pathway, suggesting that auxin plays a role in promoting nucleosome assembly. Analysis of the fas1 mutant of Arabidopsis thaliana confirmed that FAS1 is required for the auxin-dependent decrease in chromatin accessibility. These results suggest that the positive regulation of chromatin-related genes mediated by the TIR1/AFBs auxin signaling pathway enhances nucleosome assembly, resulting in decreased chromatin accessibility in proliferative cells.


The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels.

  • Hilde Nelissen‎ et al.
  • Plant biotechnology journal‎
  • 2018‎

Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1OE ) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1OE line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data.


Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation.

  • Takashi Nobusawa‎ et al.
  • PLoS biology‎
  • 2013‎

Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body.


Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1.

  • Hikaru Sakamoto‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.


Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization.

  • Ryushiro D Kasahara‎ et al.
  • Science advances‎
  • 2016‎

In angiosperms, pollen tubes carry two sperm cells toward the egg and central cells to complete double fertilization. In animals, not only sperm but also seminal plasma is required for proper fertilization. However, little is known regarding the function of pollen tube content (PTC), which is analogous to seminal plasma. We report that the PTC plays a vital role in the prefertilization state and causes an enlargement of ovules without fertilization. We termed this phenomenon as pollen tube-dependent ovule enlargement morphology and placed it between pollen tube guidance and double fertilization. Additionally, PTC increases endosperm nuclei without fertilization when combined with autonomous endosperm mutants. This finding could be applied in agriculture, particularly in enhancing seed formation without fertilization in important crops.


Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567-A.

  • Li Wan‎ et al.
  • Molecular plant pathology‎
  • 2019‎

During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.


A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci.

  • Sujan Mamidi‎ et al.
  • Nature biotechnology‎
  • 2020‎

Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4 grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly of S. viridis and de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a 'loss of shattering' trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR-Cas9 genome editing, we validated Less Shattering1 (SvLes1) as a gene whose product controls seed shattering. In S. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering allele SiLes1-TE (transposable element). This resource will enhance the utility of S. viridis for dissection of complex traits and biotechnological improvement of panicoid crops.


Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana.

  • Takushi Hachiya‎ et al.
  • Nature communications‎
  • 2021‎

Plants use nitrate, ammonium, and organic nitrogen in the soil as nitrogen sources. Since the elevated CO2 environment predicted for the near future will reduce nitrate utilization by C3 species, ammonium is attracting great interest. However, abundant ammonium nutrition impairs growth, i.e., ammonium toxicity, the primary cause of which remains to be determined. Here, we show that ammonium assimilation by GLUTAMINE SYNTHETASE 2 (GLN2) localized in the plastid rather than ammonium accumulation is a primary cause for toxicity, which challenges the textbook knowledge. With exposure to toxic levels of ammonium, the shoot GLN2 reaction produced an abundance of protons within cells, thereby elevating shoot acidity and stimulating expression of acidic stress-responsive genes. Application of an alkaline ammonia solution to the ammonium medium efficiently alleviated the ammonium toxicity with a concomitant reduction in shoot acidity. Consequently, we conclude that a primary cause of ammonium toxicity is acidic stress.


Plant Hormone and Inorganic Ion Concentrations in the Xylem Exudate of Grafted Plants Depend on the Scion-Rootstock Combination.

  • Kohei Kawaguchi‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

In grafted plants, inorganic ions and plant hormones in the xylem exudate transported from the rootstock to the scion directly or indirectly affect the scion, thereby improving the traits. Therefore, the concentration of these components in the xylem exudate of grafted plants may be an indicator for rootstock selection. On the other hand, few reports have presented a comprehensive analysis of substances transferred from the rootstock to the scion in plants grafted onto different rootstocks, primarily commercial cultivars. In this study, we measured inorganic ions and plant hormones in the xylem exudate from the rootstock to the scion in various grafted plants of tomato and eggplant. The results revealed that the concentrations of inorganic ions and plant hormones in the xylem exudate significantly differed depending on the type of rootstock. In addition, we confirmed the concentration of the inorganic ions and plant hormones in the xylem exudate of plants grafted onto the same tomato rootstock cultivars as rootstock with tomato or eggplant as the scions. As a result, the concentrations of inorganic ions and plant hormones in the xylem exudate were significantly different in the grafted plants with eggplant compared with tomato as the scion. These results suggest that signals from the scion (shoot) control the inorganic ions and plant hormones transported from the rootstock (root).


Depletion of plasma thymidine results in growth retardation and mitochondrial myopathy in mice overexpressing human thymidine phosphorylase.

  • Naomoto Harada‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Plasma thymidine levels in rodents are higher than in other mammals including humans, possibly due to a different pattern and lower level of thymidine phosphorylase expression. Here, we generated a novel knock-in (KI) mouse line with high systemic expression of human thymidine phosphorylase to investigate this difference in nucleotide metabolism in rodents. The KI mice showed growth retardation around weaning and died by 4 weeks of age with a decrease in plasma thymidine level compared with the litter-control WT mice. These phenotypes were completely or partially rescued by administration of the thymidine phosphorylase inhibitor 5-chloro-6-(2-iminopyrrolidin-1-yl) methyl-2,4(1H,3H)-pyrimidinedione hydrochloride or thymidine, respectively. Interestingly, when thymidine phosphorylase inhibitor administration was discontinued in adult animals, KI mice showed deteriorated grip strength and locomotor activity, decreased bodyweight, and subsequent hind-limb paralysis. Upon histological analyses, we observed axonal degeneration in the spinal cord, muscular atrophy with morphologically abnormal mitochondria in quadriceps, retinal degeneration, and abnormality in the exocrine pancreas. Moreover, we detected mitochondrial DNA depletion in multiple tissues of KI mice. These results indicate that the KI mouse represents a new animal model for mitochondrial diseases and should be applicable for the study of differences in nucleotide metabolism between humans and mice.


Photosynthetic-Product-Dependent Activation of Plasma Membrane H+-ATPase and Nitrate Uptake in Arabidopsis Leaves.

  • Satoru N Kinoshita‎ et al.
  • Plant & cell physiology‎
  • 2023‎

Plasma membrane (PM) proton-translocating adenosine triphosphatase (H+-ATPase) is a pivotal enzyme for plant growth and development that acts as a primary transporter and is activated by phosphorylation of the penultimate residue, threonine, at the C-terminus. Small Auxin-Up RNA family proteins maintain the phosphorylation level via inhibiting dephosphorylation of the residue by protein phosphatase 2C-D clade. Photosynthetically active radiation activates PM H+-ATPase via phosphorylation in mesophyll cells of Arabidopsis thaliana, and phosphorylation of PM H+-ATPase depends on photosynthesis and photosynthesis-related sugar supplementation, such as sucrose, fructose and glucose. However, the molecular mechanism and physiological role of photosynthesis-dependent PM H+-ATPase activation are still unknown. Analysis using sugar analogs, such as palatinose, turanose and 2-deoxy glucose, revealed that sucrose metabolites and products of glycolysis such as pyruvate induce phosphorylation of PM H+-ATPase. Transcriptome analysis showed that the novel isoform of the Small Auxin-Up RNA genes, SAUR30, is upregulated in a light- and sucrose-dependent manner. Time-course analyses of sucrose supplementation showed that the phosphorylation level of PM H+-ATPase increased within 10 min, but the expression level of SAUR30 increased later than 10 min. The results suggest that two temporal regulations may participate in the regulation of PM H+-ATPase. Interestingly, a 15NO3- uptake assay in leaves showed that light increases 15NO3- uptake and that increment of 15NO3- uptake depends on PM H+-ATPase activity. The results opened the possibility of the physiological role of photosynthesis-dependent PM H+-ATPase activation in the uptake of NO3-. We speculate that PM H+-ATPase may connect photosynthesis and nitrogen metabolism in leaves.


TAS2940, a novel brain-penetrable pan-ERBB inhibitor, for tumors with HER2 and EGFR aberrations.

  • Kei Oguchi‎ et al.
  • Cancer science‎
  • 2023‎

Genetic alterations in human epidermal growth factor receptor type 2 (HER2)/epidermal growth factor receptor (EGFR) are commonly associated with breast and lung cancers and glioblastomas. Cancers with avian erythroblastosis oncogene B (ERBB) deregulation are highly metastatic and can cause primary brain tumors. Currently, no pan-ERBB inhibitor with remarkable brain penetration is available. Here, TAS2940, a novel irreversible pan-ERBB inhibitor with improved brain penetrability, was evaluated for its efficacy against several ERBB aberrant cancer models. The selectivity of TAS2940 was evaluated by enzymatic kinase assays. The inhibitory effects of TAS2940 against ERBB genetic alterations were examined using MCF10A cells expressing various HER2 or EGFR mutations and other generic cell lines harboring deregulated ERBB expression. In vivo efficacy of TAS2940 was examined following oral treatment in subcutaneous or intracranial xenograft cancer models. TAS2940 was highly potent against cells harboring HER2/EGFR alterations. TAS2940 could selectively inhibit phosphorylation of targets and the growth of cancer cells with ERBB aberrations in vitro. TAS2940 also inhibited tumor growth in xenograft mouse models with ERBB aberrations: HER2 amplification, HER2/EGFR exon 20 insertions, and EGFR vIII mutation. TAS2940 was effective in the intracranial xenograft models of HER2/EGFR cancers and improved the survival of these mice. TAS2940 has promising therapeutic effects in preclinical study against cancers harboring HER2/EGFR mutations, especially metastatic and primary brain tumors. Our results highlight potential novel strategies against lung cancers with brain metastases harboring HER2/EGFR exon 20 insertions and glioblastomas with EGFR aberrations.


De novo Sequencing of Novel Mycoviruses From Fusarium sambucinum: An Attempt on Direct RNA Sequencing of Viral dsRNAs.

  • Yukiyoshi Mizutani‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

An increasing number of viruses are continuously being found in a wide range of organisms, including fungi. Recent studies have revealed a wide viral diversity in microbes and a potential importance of these viruses in the natural environment. Although virus exploration has been accelerated by short-read, high-throughput sequencing (HTS), and viral de novo sequencing is still challenging because of several biological/molecular features such as micro-diversity and secondary structure of RNA genomes. This study conducted de novo sequencing of multiple double-stranded (ds) RNA (dsRNA) elements that were obtained from fungal viruses infecting two Fusarium sambucinum strains, FA1837 and FA2242, using conventional HTS and long-read direct RNA sequencing (DRS). De novo assembly of the read data from both technologies generated near-entire genomic sequence of the viruses, and the sequence homology search and phylogenetic analysis suggested that these represented novel species of the Hypoviridae, Totiviridae, and Mitoviridae families. However, the DRS-based consensus sequences contained numerous indel errors that differed from the HTS consensus sequences, and these errors hampered accurate open reading frame (ORF) prediction. Although with its present performance, the use of DRS is premature to determine viral genome sequences, the DRS-mediated sequencing shows great potential as a user-friendly platform for a one-shot, whole-genome sequencing of RNA viruses due to its long-reading ability and relative structure-tolerant nature.


Morphological and Physiological Framework Underlying Plant Longevity in Arabidopsis thaliana.

  • Yukun Wang‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Monocarpic plants have a single reproductive phase, in which their longevity is developmentally programmed by molecular networks. In the reproductive phase of Arabidopsis thaliana, the inflorescence meristem (IM) maintains a central pool of stem cells and produces a limited number of flower primordia, which result in seed formation and the death of the whole plant. In this study, we observed morphological changes in the IM at cellular and intracellular resolutions until the end of the plant life cycle. We observed four biological events during the periods from 1 week after bolting (WAB) till the death of stem cells: (1) the gradual reduction in the size of the IM, (2) the dynamic vacuolation of IM cells, (3) the loss of the expression of the stem cell determinant WUSCHEL (WUS), and (4) the upregulation of the programmed cell death marker BIFUNCTIONAL NUCLEASE1 (BFN1) in association with the death of stem cells. These results indicate that the stem cell population gradually decreases in IM during plant aging and eventually is fully terminated. We further show that the expression of WUS became undetectable in IM at 3 WAB prior to the loss of CLAVATA3 (CLV3) expression at 5 WAB; CLV3 is a negative regulator of WUS. Moreover, clv3 plants showed delayed loss of WUS and lived 6 weeks longer compared with wild-type plants. These results indicated that the prolonged expression of CLV3 at 4-5 WAB may be a safeguard that inhibits the reactivation of WUS and promotes plant death. Finally, through transcriptome analysis, we determined that reactive oxygen species (ROS) are involved in the control of plant longevity. Our work presents a morphological and physiological framework for the regulation of plant longevity in Arabidopsis.


Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice.

  • Daisuke Ogawa‎ et al.
  • Scientific reports‎
  • 2021‎

Conferring drought resistant traits to crops is one of the major aims of current breeding programs in response to global climate changes. We previously showed that exogenous application of acetic acid to roots of various plants could induce increased survivability under subsequent drought stress conditions, but details of the metabolism of exogenously applied acetic acid, and the nature of signals induced by its application, have not been unveiled. In this study, we show that rice rapidly induces jasmonate signaling upon application of acetic acid, resulting in physiological changes similar to those seen under drought. The major metabolite of the exogenously applied acetic acid in xylem sap was determined as glutamine-a common and abundant component of xylem sap-indicating that acetic acid is not the direct agent inducing the observed physiological responses in shoots. Expression of drought-responsive genes in shoot under subsequent drought conditions was attenuated by acetic acid treatment. These data suggest that acetic acid activates root-to-shoot jasmonate signals that partially overlap with those induced by drought, thereby conferring an acclimated state on shoots prior to subsequent drought.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: