Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

A TCR-like antibody against a proinsulin-containing fusion peptide ameliorates type 1 diabetes in NOD mice.

  • Yushi Matsumoto‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of insulin-producing β cells. The response of autoreactive T cells to β cell antigens plays a central role in the development of T1D. Recently, fusion peptides composed by insulin C-peptide fragments and other proteins were reported as β cell target antigens for diabetogenic CD4+ T cells in non-obese diabetic (NOD) mice. In this study, we generated a T cell-receptor (TCR)-like monoclonal antibody (mAb) against a fusion peptide bound to major histocompatibility complex (MHC) class II component to elucidate the function of the fusion peptides in T1D. In addition, we developed a novel NFAT-GFP TCR reporter system to evaluate the TCR-like mAb. The NFAT-GFP reporter T cells expressing the diabetogenic TCR were specifically activated by the fusion peptide presented on the MHC class II molecules. By using the NFAT-GFP reporter T cells, we showed that the TCR-like mAb blocks the diabetogenic T cell response against the fusion peptide presented on the MHC class II molecules. Furthermore, the development of T1D was ameliorated when pre-diabetic NOD mice were treated with this mAb. These findings suggest that NFAT-GFP reporter T cells are useful to assess the function of specific TCR and the recognition of fusion peptides by T cells is crucial for the pathogenesis of T1D.


Abrogation of self-tolerance by misfolded self-antigens complexed with MHC class II molecules.

  • Hui Jin‎ et al.
  • Science advances‎
  • 2022‎

Specific MHC class II alleles are strongly associated with susceptibility to various autoimmune diseases. Although the primary function of MHC class II molecules is to present peptides to helper T cells, MHC class II molecules also function like a chaperone to transport misfolded intracellular proteins to the cell surface. In this study, we found that autoantibodies in patients with Graves' disease preferentially recognize thyroid-stimulating hormone receptor (TSHR) complexed with MHC class II molecules of Graves' disease risk alleles, suggesting that the aberrant TSHR transported by MHC class II molecules is the target of autoantibodies produced in Graves' disease. Mice injected with cells expressing mouse TSHR complexed with MHC class II molecules, but not TSHR alone, produced anti-TSHR autoantibodies. These findings suggested that aberrant self-antigens transported by MHC class II molecules exhibit antigenic properties that differ from normal self-antigens and abrogate self-tolerance, providing a novel mechanism for autoimmunity.


Invariant chain p41 mediates production of soluble MHC class II molecules.

  • Tatsuya Shishido‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Major histocompatibility complex class II (MHC II) molecules are mainly expressed on antigen presentation cells and play an important role in immune response. It has been reported that MHC II molecules are also detected in serum as a soluble form (sMHC II molecules), and they are considered to be involved in the maintenance of self-tolerance. However, the mechanism by which sMHC II molecules are produced remains unclear. Invariant chain (Ii), also called CD74, plays an important role in antigen presentation of MHC II molecules. In the present study, we analyzed the role of Ii on the production of sMHC II molecules. We found that the amount of sMHC II molecules in serum was decreased in Ii-deficient mice compared to wild-type mice. sMHC II molecules were secreted from cells transfected with MHC II molecules and Ii but not from cells transfected with MHC II molecules alone. Moreover, isoform p41 of Ii-transfected cells induced more sMHC II molecules compared to isoform p31-transfected cells. The molecular weight of sMHC II molecules from MHC II and Ii p41-transfected cells was approximately 60 kDa, indicating that sMHC II molecules are a single heterodimer of α and β chains that is not associated with micro-vesicles. From the analysis of Ii-deletion mutants, we found that the luminal domain of Ii p41 is crucial for the production of sMHC II molecules. These results suggested that Ii has an important role in production of sMHC II molecules.


Plasmodium falciparum RIFIN is a novel ligand for inhibitory immune receptor LILRB2.

  • Akihito Sakoguchi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Plasmodium falciparum causes the most severe form of malaria. Acquired immunity against P. falciparum provides insufficient protection even after repeated infections. Therefore, P. falciparum parasites might exploit inhibitory receptors for immune evasion. P. falciparum RIFINs are products of a multigene family consisting of 150-200 genes. Previously, we demonstrated that some RIFINs downregulate the immune response through the leukocyte immunoglobulin-like receptor (LILR) family inhibitory receptor, LILRB1, and leukocyte-associated immunoglobulin-like receptor 1, LAIR1. In this study, we further analyzed the expression of inhibitory receptor ligands on P. falciparum-infected erythrocytes and found that P. falciparum-infected erythrocytes expressed ligands for another LILR family inhibitory receptor, LILRB2, that recognizes HLA class I molecules as a host ligand. Furthermore, we identified that a specific RIFIN was a ligand for LILRB2 by using a newly developed RIFIN expression library. In addition, the domain 3 of LILRB2 was involved in RIFIN binding, whereas the domains 1 and 2 of LILRB2 were involved in the binding to HLA class I molecules. These results suggest that inhibitory receptor LILRB2 is also targeted by RIFIN for immune evasion of P. falciparum similar to LILRB1 and LAIR1.


Engineering large viral DNA genomes using the CRISPR-Cas9 system.

  • Tadahiro Suenaga‎ et al.
  • Microbiology and immunology‎
  • 2014‎

Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus-infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time-consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat-Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene-ablated HSV but also gene knock-in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein-Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.


Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration.

  • Richard L Watson‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM.


Positive and negative regulation of the Fcγ receptor-stimulating activity of RNA-containing immune complexes by RNase.

  • Ryota Naito‎ et al.
  • JCI insight‎
  • 2023‎

The U1RNP complex, Ro/SSA, and La/SSB are major RNA-containing autoantigens. Immune complexes (ICs) composed of RNA-containing autoantigens and autoantibodies are suspected to be involved in the pathogenesis of some systemic autoimmune diseases. Therefore, RNase treatment, which degrades RNA in ICs, has been tested in clinical trials as a potential therapeutic agent. However, no studies to our knowledge have specifically evaluated the effect of RNase treatment on the Fcγ receptor-stimulating (FcγR-stimulating) activity of RNA-containing ICs. In this study, using a reporter system that specifically detects FcγR-stimulating capacity, we investigated the effect of RNase treatment on the FcγR-stimulating activity of RNA-containing ICs composed of autoantigens and autoantibodies from patients with systemic autoimmune diseases such as systemic lupus erythematosus. We found that RNase enhanced the FcγR-stimulating activity of Ro/SSA- and La/SSB-containing ICs, but attenuated that of the U1RNP complex-containing ICs. RNase decreased autoantibody binding to the U1RNP complex, but increased autoantibody binding to Ro/SSA and La/SSB. Our results suggest that RNase enhances FcγR activation by promoting the formation of ICs containing Ro/SSA or La/SSB. Our study provides insights into the pathophysiology of autoimmune diseases involving anti-Ro/SSA and anti-La/SSB autoantibodies, and into the therapeutic application of RNase treatment for systemic autoimmune diseases.


PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B.

  • Takeshi Satoh‎ et al.
  • Cell‎
  • 2008‎

Glycoprotein B (gB) is one of the essential components for infection by herpes simplex virus-1 (HSV-1). Although several cellular receptors that associate with glycoprotein D (gD), such as herpes virus entry mediator (HVEM) and Nectin-1, have been identified, specific molecules that mediate HSV-1 infection by associating with gB have not been elucidated. Here, we found that paired immunoglobulin-like type 2 receptor (PILR) alpha associates with gB, and cells transduced with PILRalpha become susceptible to HSV-1 infection. Furthermore, HSV-1 infection of human primary cells expressing both HVEM and PILRalpha was blocked by either anti-PILRalpha or anti-HVEM antibody. Our results demonstrate that cellular receptors for both gB and gD are required for HSV-1 infection and that PILRalpha plays an important role in HSV-1 infection as a coreceptor that associates with gB. These findings uncover a crucial aspect of the mechanism underlying HSV-1 infection.


Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors.

  • Fumiji Saito‎ et al.
  • Nature‎
  • 2017‎

Malaria is among the most serious infectious diseases affecting humans, accounting for approximately half a million deaths each year. Plasmodium falciparum causes most life-threatening cases of malaria. Acquired immunity to malaria is inefficient, even after repeated exposure to P. falciparum, but the immune regulatory mechanisms used by P. falciparum remain largely unknown. Here we show that P. falciparum uses immune inhibitory receptors to achieve immune evasion. RIFIN proteins are products of a polymorphic multigene family comprising approximately 150-200 genes per parasite genome that are expressed on the surface of infected erythrocytes. We found that a subset of RIFINs binds to either leucocyte immunoglobulin-like receptor B1 (LILRB1) or leucocyte-associated immunoglobulin-like receptor 1 (LAIR1). LILRB1-binding RIFINs inhibit activation of LILRB1-expressing B cells and natural killer (NK) cells. Furthermore, P. falciparum-infected erythrocytes isolated from patients with severe malaria were more likely to interact with LILRB1 than erythrocytes from patients with non-severe malaria, although an extended study with larger sample sizes is required to confirm this finding. Our results suggest that P. falciparum has acquired multiple RIFINs to evade the host immune system by targeting immune inhibitory receptors.


An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies.

  • Yafei Liu‎ et al.
  • Cell‎
  • 2021‎

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.


Structural basis for RIFIN-mediated activation of LILRB1 in malaria.

  • Thomas E Harrison‎ et al.
  • Nature‎
  • 2020‎

The Plasmodium species that cause malaria are obligate intracellular parasites, and disease symptoms occur when these parasites replicate in human blood. Despite the risk of immune detection, the parasite delivers proteins that bind to host receptors on the cell surfaces of infected erythrocytes. In the causative parasite of the most deadly form of malaria in humans, Plasmodium falciparum, RIFINs form the largest family of surface proteins displayed by erythrocytes1. Some RIFINs can bind to inhibitory immune receptors, and these RIFINs act as targets for unusual antibodies that contain a LAIR1 ectodomain2-4 or as ligands for LILRB15. RIFINs stimulate the activation of and signalling by LILRB15, which could potentially lead to the dampening of human immune responses. Here, to understand how RIFINs activate LILRB1-mediated signalling, we determine the structure of a RIFIN bound to LILRB1. We show that this RIFIN mimics the natural activating ligand of LILRB1, MHC class I, in its LILRB1-binding mode. A single mutation in the RIFIN disrupts the complex, blocks LILRB1 binding of all tested RIFINs and abolishes signalling in a reporter assay. In a supported lipid bilayer system, which mimics the activation of natural killer (NK) cells by antibody-dependent cell-mediated cytotoxicity, both RIFIN and MHC are recruited to the immunological synapse of NK cells and reduce the activation of NK cells, as measured by the mobilization of perforin. Therefore, LILRB1-binding RIFINs mimic the binding mode of the natural ligand of LILRB1 and suppress the function of NK cells.


LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis.

  • Guojin Wu‎ et al.
  • Nature cancer‎
  • 2021‎

Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.


The Fc Domain of Immunoglobulin Is Sufficient to Bridge NK Cells with Virally Infected Cells.

  • Hong-Sheng Dai‎ et al.
  • Immunity‎
  • 2017‎

Clearance of pathogens or tumor cells by antibodies traditionally requires both Fab and Fc domains of IgG. Here, we show the Fc domain of IgG alone mediates recognition and clearance of herpes simplex virus (HSV1)-infected cells. The human natural killer (NK) cell surface is naturally coated with IgG bound by its Fc domain to the Fcγ receptor CD16a. NK cells utilize the Fc domain of bound IgG to recognize gE, an HSV1-encoded glycoprotein that also binds the Fc domain of IgG but at a site distinct from CD16a. The bridge formed by the Fc domain between the HSV1-infected cell and the NK cell results in NK cell activation and lysis of the HSV1-infected cell in the absence of HSV1-specific antibody in vitro and prevents fatal HSV1 infection in vivo. This mechanism also explains how bacterial IgG-binding proteins regulate NK cell function and may be broadly applicable to Fcγ-receptor-bearing cells.


Regulation of Siglec-7-mediated varicella-zoster virus infection of primary monocytes by cis-ligands.

  • Tadahiro Suenaga‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Varicella-zoster virus (VZV) first infects hematopoietic cells, with the infected cells then acting to distribute the virus throughout the body. Sialic acid-binding immunoglobulin-like lectin (Siglec) family molecules recognize sialic acid-containing molecules on the same cell surface, called cis-ligands, or molecules on other cells or soluble agents, called trans-ligands. Among the Siglec family molecules, Siglec-4 and Siglec-7 mediate VZV infection through association with glycoprotein B (gB). As Siglec-7, but not Siglec-4, is expressed on hematopoietic cells such as monocytes, the regulatory mechanism by which Siglec-7 associates with gB is important to our understanding of VZV infection of blood cells. Here, we found that Siglec-7 is required for VZV to infect human primary monocytes. Furthermore, treatment of primary monocytes with sialidase enhanced both VZV gB binding to monocytes and VZV infectivity. Calcium influx in primary monocytes decreased the expression of Siglec-7 cis-ligands and increased VZV infectivity. These results demonstrate that the Siglec-7 cis-ligands present on primary monocytes play an important role in VZV infection through regulation of the interaction between gB and Siglec-7.


Siglec-7 mediates varicella-zoster virus infection by associating with glycoprotein B.

  • Tadahiro Suenaga‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Sialic acid immunoglobulin-like lectin (Siglec) family molecules are immune regulatory receptors that bind to specific molecules containing sialic acids. Varicella-zoster virus (VZV), a member of the herpesvirus family, infects hematopoietic cells and spreads throughout the body, causing chickenpox, shingles, and, sometimes fatal encephalomyelitis. However, the cellular entry receptors that are required for VZV to infect hematopoietic cells have remained unclear. Here, we found that Siglec-7, mainly expressed on hematopoietic cells, binds to VZV envelope glycoprotein B in a sialic acid-dependent manner. Furthermore, Siglec-7 mediated VZV infection by inducing membrane fusion. Our findings provide the first evidence for a molecular mechanism by which VZV infects hematopoietic cells.


Establishment of a Therapeutic Anti-Pan HLA-Class II Monoclonal Antibody That Directly Induces Lymphoma Cell Death via Large Pore Formation.

  • Shuji Matsuoka‎ et al.
  • PloS one‎
  • 2016‎

To develop a new therapeutic monoclonal Antibody (mAb) for Hodgkin lymphoma (HL), we immunized a BALB/c mouse with live HL cell lines, alternating between two HL cell lines. After hybridization, we screened the hybridoma clones by assessing direct cytotoxicity against a HL cell line not used for immunization. We developed this strategy for establishing mAb to reduce the risk of obtaining clonotypic mAb specific for single HL cell line. A newly established mouse anti-human mAb (4713) triggered cytoskeleton-dependent, but complement- and caspase-independent, cell death in HL cell lines, Burkitt lymphoma cell lines, and advanced adult T-cell leukemia cell lines. Intravenous injection of mAb 4713 in tumor-bearing SCID mice improved survival significantly. mAb 4713 was revealed to be a mouse anti-human pan-HLA class II mAb. Treatment with this mAb induced the formation of large pores on the surface of target lymphoma cells within 30 min. This finding suggests that the cell death process induced by this anti-pan HLA-class II mAb may involve the same death signals stimulated by a cytolytic anti-pan MHC class I mAb that also induces large pore formation. This multifaceted study supports the therapeutic potential of mAb 4713 for various forms of lymphoma.


Contributions of the N-terminal flanking residues of an antigenic peptide from the Japanese cedar pollen allergen Cry j 1 to the T-cell activation by HLA-DP5.

  • Seisuke Kusano‎ et al.
  • International immunology‎
  • 2023‎

Cry j 1 is a major allergen present in Japanese cedar (Cryptomeria japonica) pollens. Peptides with the core sequence of KVTVAFNQF from Cry j 1 ('pCj1') bind to HLA-DP5 and activate Th2 cells. In this study, we noticed that Ser and Lys at positions -2 and -3, respectively, in the N-terminal flanking (NF) region to pCj1 are conserved well in HLA-DP5-binding allergen peptides. A competitive binding assay showed that the double mutation of Ser(-2) and Lys(-3) to Glu [S(P-2)E/K(P-3)E] in a 13-residue Cry j 1 peptide (NF-pCj1) decreased its affinity for HLA-DP5 by about 2-fold. Similarly, this double mutation reduced, by about 2-fold, the amount of NF-pCj1 presented on the surface of mouse antigen-presenting dendritic cell line 1 (mDC1) cells stably expressing HLA-DP5. We established NF-pCj1-specific and HLA-DP5-restricted CD4+ T-cell clones from HLA-DP5 positive cedar pollinosis (CP) patients, and analyzed their IL-2 production due to the activation of mouse TG40 cells expressing the cloned T-cell receptor by the NF-pCj1-presenting mDC1 cells. The T-cell activation was actually decreased by the S(P-2)E/K(P-3)E mutation, corresponding to the reduction in the peptide presentation by this mutation. In contrast, the affinity of NF-pCj1·HLA-DP5 for the T-cell receptor was not affected by the S(P-2)E/K(P-3)E mutation, as analyzed by surface plasmon resonance. Considering the positional and side-chain differences of these NF residues from previously reported T-cell activating sequences, the mechanisms of enhanced T-cell activation by Ser(-2) and Lys(-3) of NF-pCj1 may be novel.


SARS-CoV-2-induced humoral immunity through B cell epitope analysis in COVID-19 infected individuals.

  • Shota Yoshida‎ et al.
  • Scientific reports‎
  • 2021‎

The aim of this study is to understand adaptive immunity to SARS-CoV-2 through the analysis of B cell epitope and neutralizing activity in coronavirus disease 2019 (COVID-19) patients. We obtained serum from forty-three COVID-19 patients from patients in the intensive care unit of Osaka University Hospital (n = 12) and in Osaka City Juso Hospital (n = 31). Most individuals revealed neutralizing activity against SARS-CoV-2 assessed by a pseudotype virus-neutralizing assay. The antibody production against the spike glycoprotein (S protein) or receptor-binding domain (RBD) of SARS-CoV-2 was elevated, with large individual differences, as assessed by ELISA. We observed the correlation between neutralizing antibody titer and IgG, but not IgM, antibody titer of COVID-19 patients. In the analysis of the predicted the linear B cell epitopes, hot spots in the N-terminal domain of the S protein were observed in the serum from patients in the intensive care unit of Osaka University Hospital. Overall, the analysis of antibody production and B cell epitopes of the S protein from patient serum may provide a novel target for the vaccine development against SARS-CoV-2.


Heme ameliorates dextran sodium sulfate-induced colitis through providing intestinal macrophages with noninflammatory profiles.

  • Hisako Kayama‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

The local environment is crucial for shaping the identities of tissue-resident macrophages (Mϕs). When hemorrhage occurs in damaged tissues, hemoglobin induces differentiation of anti-inflammatory Mϕs with reparative function. Mucosal bleeding is one of the pathological features of inflammatory bowel diseases. However, the heme-mediated mechanism modulating activation of intestinal innate immune cells remains poorly understood. Here, we show that heme regulates gut homeostasis through induction of Spi-C in intestinal CX3CR1high Mϕs. Intestinal CX3CR1high Mϕs highly expressed Spi-C in a heme-dependent manner, and myeloid lineage-specific Spic-deficient (Lyz2-cre; Spicflox/flox ) mice showed severe intestinal inflammation with an increased number of Th17 cells during dextran sodium sulfate-induced colitis. Spi-C down-regulated the expression of a subset of Toll-like receptor (TLR)-inducible genes in intestinal CX3CR1high Mϕs to prevent colitis. LPS-induced production of IL-6 and IL-1α, but not IL-10 and TNF-α, by large intestinal Mϕs from Lyz2-cre; Spicflox/flox mice was markedly enhanced. The interaction of Spi-C with IRF5 was linked to disruption of the IRF5-NF-κB p65 complex formation, thereby abrogating recruitment of IRF5 and NF-κB p65 to the Il6 and Il1a promoters. Collectively, these results demonstrate that heme-mediated Spi-C is a key molecule for the noninflammatory signature of intestinal Mϕs by suppressing the induction of a subset of TLR-inducible genes through binding to IRF5.


Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages.

  • Malay Haldar‎ et al.
  • Cell‎
  • 2014‎

Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor SPI-C is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80(+)VCAM1(+) bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor BACH1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: