Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

A low-frequency GLIS3 variant associated with resistance to Japanese type 1 diabetes.

  • Takuya Awata‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

The role of low-frequency variants in type 1 diabetes (T1D) susceptibility still remains to be clarified. In the present study, we analyzed low-frequency variants of the T1D candidate genes in Japanese. We first screened for protein-changing variants of 24 T1D candidate genes in 96 T1D patients and 96 control subjects, and then the association with T1D was tested in 706 T1D patients and 863 control subjects recruited from the collaborating institutions in Japan. In total, 56 protein-changing variants were discovered; among them, 34 were low-frequency variants (allele frequency < 5%). The association analysis of the low-frequency variants revealed that only the A908V variant of GLIS3 was strongly associated with resistance to T1D (Haldane's odds ratio = 0.046, p = 8.21 × 10(-4), and pc=2.22 × 10(-2)). GLIS3 is a zinc finger transcription factor that is highly expressed in pancreatic beta cells, and regulates beta cell development and insulin gene expression. GLIS3 mRNA is also moderately expressed in the human thymus. The precise mechanism responsible for the association is unclear at present, but the A908V variant may affect autoimmunity to the GLIS3 protein itself; the 908V containing epitope may induce central or peripheral tolerance more efficiently than that of 908A.


Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes.

  • Takuya Awata‎ et al.
  • Biochemical and biophysical research communications‎
  • 2005‎

Since vascular endothelial growth factor (VEGF) has a strong effect on induction of vascular permeability, VEGF is an attractive candidate gene for development of diabetic macular edema (ME). Among the 378 patients with type 2 diabetes studied, 203 patients had no retinopathy, 93 had non-proliferative diabetic retinopathy (NPDR), and 82 had proliferative diabetic retinopathy (PDR). ME was present in 16 patients with NPDR and 47 patients with PDR. We genotyped three VEGF polymorphisms: C-2,578A, G-1,154A, and C-634G. Genotype and allele distribution of C-634G, but not C-2,578A or G-1,154A, were significantly different between patients with and without diabetic retinopathy. Logistic regression analysis revealed that the C-634G genotype was a risk factor for DR (p = 0.002), and furthermore for ME (p = 0.047), independently from severity of DR, with the -634C allele increasing the risk. Macular thickness measured by optical coherence tomography was correlated with the C-634G genotype, with the trend increasing with the presence of more -634C alleles (p = 0.006). Stepwise regression analysis showed that duration of diabetes and presence of the C-634G genotype were independent predictors of macular thickness. In addition, basic transcriptional activity levels associated with the -634C allele were greater compared to those seen with the -634G allele in human glioma and lymphoblastic T-lymphocyte cells. These results demonstrate that the VEGF C-634G polymorphism is a genetic risk factor for ME as well as DR.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: