Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Identification of a novel CaMKK substrate.

  • Tomohito Fujimoto‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates specific downstream protein kinases including CaMKI, CaMKIV and 5'-AMP-activated protein kinase. In order to examine the variety of CaMKK-mediated signaling pathways, we searched for novel CaMKK substrate(s) using N(6)-(1-methylbutyl)-ATP and genetically engineered CaMKKα mutant, CaMKKα (Phe(230)Gly), that was capable of utilizing this ATP analogue as a phosphate donor. Incubation of rat brain extracts with recombinant CaMKKα (Phe(230)Gly), but not with wild-type kinase, in the presence of N(6)-(1-methylbutyl)-ATP and Ca(2+)/CaM, induced significant threonine phosphorylation of a 50kDa protein as well as CaMKI phosphorylation at Thr(177). The 50kDa CaMKK substrate was partially purified by using serial column chromatography, and was identified as Syndapin I by LC-MS/MS analysis. We confirmed that recombinant Syndapin I was phosphorylated by CaMKKα and β isoforms at Thr(355)in vitro. Phosphorylation of HA-Syndapin I at Thr(355) in transfected HeLa cells was significantly induced by co-expression of constitutively active mutants of CaMKK isoforms. This is the first report that CaMKK is capable of phosphorylating a non-kinase substrate suggesting the possibility of CaMKK-mediated novel Ca(2+)-signaling pathways that are independent of downstream protein kinases.


Dopamine receptor genes and evolutionary differentiation in the domestication of fighting cocks and long-crowing chickens.

  • Tomoyoshi Komiyama‎ et al.
  • PloS one‎
  • 2014‎

The chicken domestication process represents a typical model of artificial selection, and gives significant insight into the general understanding of the influence of artificial selection on recognizable phenotypes. Two Japanese domesticated chicken varieties, the fighting cock (Shamo) and the long-crowing chicken (Naganakidori), have been selectively bred for dramatically different phenotypes. The former has been selected exclusively for aggressiveness and the latter for long crowing with an obedient sitting posture. To understand the particular mechanism behind these genetic changes during domestication, we investigated the degree of genetic differentiation in the aforementioned chickens, focusing on dopamine receptor D2, D3, and D4 genes. We studied other ornamental chickens such as Chabo chickens as a reference for comparison. When genetic differentiation was measured by an index of nucleotide differentiation (NST) newly devised in this study, we found that the NST value of DRD4 for Shamo (0.072) was distinctively larger than those of the other genes among the three populations, suggesting that aggressiveness has been selected for in Shamo by collecting a variety of single nucleotide polymorphisms. In addition, we found that in DRD4 in Naganakidori, there is a deletion variant of one proline at the 24th residue in the repeat of nine prolines of exon 1. We thus conclude that artificial selection has operated on these different kinds of genetic variation in the DRD4 genes of Shamo and Naganakidori so strongly that the two domesticated varieties have differentiated to obtain their present opposite features in a relatively short period of time.


Evaluation of gastric submucosal tumors using endoscopically visualized features with submucosal endoscopy.

  • Hideki Kobara‎ et al.
  • Oncology letters‎
  • 2014‎

Although the macroscopic characteristics of submucosal tumors (SMTs), such as gastrointestinal stromal tumors (GISTs), have been characterized, the assessment of SMTs by their endoscopically visualized features (EVF; which are observed by endoscopic imaging under direct view) remains unevaluated. The aim of the present study was to investigate the potential of endoscopic diagnostics for SMTs using EVF. The EVF of 26 gastric SMT cases, in which the final pathological diagnosis was obtained by core biopsy using the submucosal endoscopy with mucosal flap method, were retrospectively reviewed. Each type of SMT was classified according to the following five EVF: Color, clarity, shape, tumor coating and solidity. Additionally, the EVF of 13 low-risk GISTs and 13 benign submucosal tumors (BSTs) were comparatively evaluated for the five abovementioned EVF. Similar trends were identified between the low-risk GISTs, granular cell tumors and the schwannoma with regard to EVF. However, while these tumors exhibited cloudy EVF, the leiomyomas tended to exhibit clear EVF. Among SMTs of the heterotopic pancreas type, the EVF demonstrated particularly small nodules of the pancreatic tissue itself. Although the sample size included in the present study is small, a classification system for gastric SMTs was proposed according to the EVF. When compared with the BST group, the GIST group demonstrated a significantly higher frequency of tumors that exhibited a combination of three EVF (white, cloudy and rigid) that are consistent with all gastric GISTs (P<0.05). Gastric SMTs may be classified based on the EVF, which indicates that the EVF possess potential diagnostic value for the differentiation of GISTs from BSTs.


Serum miRNAs Predicting Sustained HBs Antigen Reduction 48 Weeks after Pegylated Interferon Therapy in HBe Antigen-Negative Patients.

  • Koji Fujita‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

The therapeutic goal for hepatitis B virus (HBV) infection is HBs antigen (HBsAg) seroclearance, which is achieved through 48-week pegylated interferon (Peg-IFN) therapy. This study aimed to identify predictive biomarkers for sustained HBsAg reduction by analyzing serum microRNAs. Twenty-two consecutive chronic HBV infection patients negative for HBe antigen (HBeAg) with HBV-DNA levels <5 log copies/mL, alanine aminotransferase (ALT) <100 U/L, and compensated liver functions, were enrolled. The patients were subcutaneously injected with Peg-IFNα-2a weekly for 48 weeks (treatment period), followed by the 48-week observation period. HBsAg 1-log drop relative to baseline levels recorded at the end of the observation period was considered effective. Sera were obtained at weeks 0 and 24 during the treatment period analyzed for microRNAs. The microRNA (miRNA) antiviral activity was evaluated in vitro using Huh7/sodium taurocholate cotransporting polypeptide (NTCP) cells. As a result, six patients achieved the HBsAg 1-log drop after the observation periods. Comparison of serum microRNA levels demonstrated that high miR-6126 levels at week 24 predicted HBsAg 1-log drop. Furthermore, miR-6126 reduced HBsAg in culture medium supernatants and intracellular HBV-DNA quantities in Huh7/NTCP cells. In conclusion, high serum miR-6126 levels during Peg-IFN therapy predicted the HBsAg 1-log drop 48 weeks after the completion of therapy. In vitro assays revealed that miR-6126 was able to suppress HBsAg production and HBV replication.


Serum microRNA expression profiling in patients with multiple system atrophy.

  • Kodai Kume‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Multiple system atrophy (MSA) is a sporadic neurodegenerative disease that is pathologically characterized by α‑synuclein positive glial cytoplasmic inclusions in oligodendrocytes. The clinical diagnosis of MSA is often challenging as there are no established biomarkers and diagnoses are now based on clinical findings alone. At present, the etiology and pathogenesis of MSA are unclear. It has been reported that dysregulation of microRNA (miRNA/miR) serves an important role in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The miRNA profile of patients with MSA remains to be established. The present study investigated the serum miRNA expression level of 10 patients with MSA, using microarray chips including 668 miRNAs. It was identified that 50 miRNAs were significantly upregulated and 17 miRNAs were significantly downregulated in the serum of the patients with MSA. The most upregulated miRNA was miR‑16, which may induce the accumulation of α‑synuclein. The target genes of some miRNAs upregulated in MSA (including miR‑17, 20a, 24, 25, 30d and 451) were associated with autophagy‑associated molecules. The present study concluded that the expression pattern of miRNAs may be a clinical biomarker for MSA and targeting these miRNAs may provide a novel treatment for MSA.


Phosphorylation and dephosphorylation of Ca2+/calmodulin-dependent protein kinase kinase β at Thr144 in HeLa cells.

  • Shota Takabatake‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) acts as a regulatory kinase that phosphorylates and activates multiple downstream kinases including CaMKI, CaMKIV, 5'AMP-activated protein kinase (AMPK) and protein kinase B (PKB), resulting in regulation of wide variety of Ca2+-dependent physiological responses under normal and pathological conditions. CaMKKβ is regulated by Ca2+/calmodulin-binding, autophosphorylation, and transphosphorylation by multiple protein kinases including cAMP-dependent protein kinase (PKA). In this report, we found that phosphorylation of CaMKKβ is dynamically regulated by protein phosphatase/kinase system in HeLa cells. Global phosphoproteomic analysis revealed the constitutive phosphorylation at 8 Ser residues including Ser128, 132, and 136 in the N-terminal regulatory domain of rat CaMKKβ in unstimulated HeLa cells as well as inducible phosphorylation of Thr144 in the cells treated with a phosphatase inhibitor, okadaic acid (OA). Thr144 phosphorylation in CaMKKβ has shown to be rapidly induced by OA treatment in a time- and dose-dependent manner in transfected HeLa cells, indicating that Thr144 in CaMKKβ is maintained unphosphorylated state by protein phosphatase(s). We confirmed that in vitro dephosphorylation of pThr144 in CaMKKβ by protein phosphatase 2A and 1. We also found that the pharmacological inhibition of protein phosphatase(s) significantly induces CaMKKβ-phosphorylating activity (at Thr144) in HeLa cell lysates as well as in intact cells; however, it was unlikely that this activity was catalyzed by previously identified Thr144-kinases, such as AMPK and PKA. Taken together, these results suggest that the phosphorylation and dephosphorylation of Thr144 in CaMKKβ is dynamically regulated by multiple kinases/phosphatases signaling resulting in fine-tuning of the enzymatic property.


MicroRNA Expression Profiles in Superficial Esophageal Squamous Cell Carcinoma before Endoscopic Submucosal Dissection: A Pilot Study.

  • Shintaro Fujihara‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Esophageal squamous cell carcinoma (ESCC) has a poor prognosis when diagnosed at an advanced stage, and early detection and treatment are essential to improve survival. However, intraobserver and interobserver variation make the diagnosis of superficial ESCC difficult, and suitable biomarkers are urgently needed. Here, we compared the microRNA (miRNA) expression profiles of superficial ESCC tissues and adjacent normal tissues obtained immediately before esophageal endoscopic submucosal dissection. We found that ESCC and normal tissues differed in their miRNA expression profiles. In particular, miR-21-5p and miR-146b-5p were significantly upregulated and miR-210-3p was significantly downregulated in tumor tissues compared with normal tissues. We also detected significant associations between miRNA expression and ESCC invasion depth and lymphovascular invasion. The same differential expression of miR-21-5p, miR-146b-5p, and miR-210-3p was detected in ESCC cell lines compared with normal esophageal epithelial cells in vitro. However, transfection of ESCC cells with miR-210-3p and miR-21-5p mimics or inhibitors had partial effects on cell proliferation and invasion in vitro. These results indicate that miRNA expression is significantly deregulated in superficial ESCC, and suggest that the potential contribution of differentially expressed miRNAs to the malignant phenotype should be further investigated.


Evaluating the Effect of Lenvatinib on Sorafenib-Resistant Hepatocellular Carcinoma Cells.

  • Tingting Shi‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related deaths worldwide. Sorafenib has been used as a first-line systemic treatment for over a decade. However, resistance to sorafenib limits patient response and presents a major hurdle during HCC treatment. Lenvatinib has been approved as a first-line systemic treatment for advanced HCC and is the first agent to achieve non-inferiority against sorafenib. Therefore, in the present study, we evaluated the inhibition efficacy of lenvatinib in sorafenib-resistant HCC cells. Only a few studies have been conducted on this topic. Two human HCC cell lines, Huh-7 and Hep-3B, were used to establish sorafenib resistance, and in vitro and in vivo studies were employed. Lenvatinib suppressed sorafenib-resistant HCC cell proliferation mainly by inducing G1 cell cycle arrest through ERK signaling. Hep-3B sorafenib-resistant cells showed partial cross-resistance to lenvatinib, possibly due to the contribution of poor autophagic responsiveness. Overall, the findings suggest that the underlying mechanism of lenvatinib in overcoming sorafenib resistance in HCC involves FGFR4-ERK signaling. Lenvatinib may be a suitable second-line therapy for unresectable HCC patients who have developed sorafenib resistance and express FGFR4.


Oxidized LDL Downregulates ABCA1 Expression via MEK/ERK/LXR Pathway in INS-1 Cells.

  • Jingya Lyu‎ et al.
  • Nutrients‎
  • 2021‎

Impaired insulin secretion is one of the main causes of type 2 diabetes. Cholesterol accumulation-induced lipotoxicity contributes to impaired insulin secretion in pancreatic beta cells. However, the detailed mechanism in this process remains unclear. In this study, we proved that oxidized low-density lipoprotein (OxLDL) reduced insulin content, decreased PDX-1 expression, and impaired glucose-stimulated insulin secretion (GSIS) in INS-1 cells, which were rescued by addition of high-density lipoprotein (HDL). OxLDL receptors and cholesterol content were increased by OxLDL. Consistently, OxLDL suppressed cholesterol transporter ABCA1 expression and transcription in a dose-dependent and time-dependent manner. Inhibition of MEK by its specific inhibitor, PD98059, altered the effect of OxLDL on ABCA1 transcription and activation of ERK. Next, chromatin immunoprecipitation assay demonstrated that liver X receptor (LXR) could directly bind to ABCA1 promoter and this binding was inhibited by OxLDL. Furthermore, OxLDL decreased the nuclear LXR expression, which was prevented by HDL. LXR-enhanced ABCA1 transcription was suppressed by OxLDL, and the effect was cancelled by mutation of the LXR-binding sites. In summary, our study shows that OxLDL down-regulates ABCA1 expression by MEK/ERK/LXR pathway, leading to cholesterol accumulation in INS-1 cells, which may result in impaired insulin synthesis and GSIS.


Exendin-4 Increases Scavenger Receptor Class BI Expression via Activation of AMPK/FoxO1 in Human Vascular Endothelial Cells.

  • Jingya Lyu‎ et al.
  • Current issues in molecular biology‎
  • 2022‎

Glucagon-like peptide-1 receptor agonist (GLP-1RA) has been clinically proven to protect endothelial function. Previously, we demonstrated that endothelial NO synthase (eNOS) was activated by high-density lipoprotein (HDL) via its scavenger receptor of the B class/human homologue of SR-BI, CD36 and LIMPII analogous-1(hSR-BI/CLA-1). Here, we investigated the effect of GLP-1RA and exendin-4 on the expression of hSR-BI/CLA-1 in HUVECs. Our results confirmed that GLP-1R was expressed in HUVECs by PCR and exendin-4 significantly enhanced HDL-induced eNOS activation. Next, exendin-4 increased the expression of hSR-BI/CLA-1 and a blockade of GLP-1R cancelled this effect. Further, the hSR-BI/CLA-1 transcriptional activity was enhanced by exendin-4, which was diminished by the inhibition of AMPK or dominant-negative AMPK-α-subunit. Moreover, AMPK was phosphorylated by the activation of GLP-1R. Next, ChIP assay demonstrated that exendin-4 increased the FoxO1-binding in the hSR-BI/CLA-1 promoter by upregulation of FoxO1. Mutation of FoxO1-binding or silencing of FoxO1 cancelled the effect of exendin-4 on hSR-BI/CLA-1 expression. Exendin-4 reduced FoxO1 phosphorylation and induced its nuclear accumulation, while this effect was altered by the blocking of GLP-1R or inhibition of AMPK pathway. In summary, our results proved that exendin-4 increased hSR-BI/CLA-1 expression via the AMPK/FoxO1 pathway to activate eNOS, providing a basic mechanism underlining the protective effect of GLP-1RA on endothelial function.


Effect of Lenvatinib treatment on the cell cycle and microRNA profile in hepatocellular carcinoma cells.

  • Mai Nakahara‎ et al.
  • Biomedical reports‎
  • 2022‎

Lenvatinib is a tyrosine kinase receptor inhibitor used to treat unresectable hepatocellular carcinoma (HCC). In this study, we investigated the antitumor effects of Lenvatinib treatment on HCC cell lines. Proliferation was examined in four HCC cell lines (HuH-7, Hep3B, Li-7, and PLC/PRF/5) using Cell Counting Kit-8 assays. Xenograft mouse models were used to assess the effects of Lenvatinib in vivo. Cell cycle, western blotting, and microRNA (miRNA) expression analyses were performed to identify the antitumor inhibitory potential of Lenvatinib on HCC cells. Lenvatinib treatment suppressed proliferation of HuH-7 and Hep3B, but not Li-7 and PLC/PRF/5 cells and induced G0/G1 cell cycle arrest and cyclin D1 downregulation in Lenvatinib-sensitive cells. Lenvatinib treatment also reduced tumor growth in HuH-7 xenograft mouse models. miRNA microarrays revealed that Lenvatinib treatment altered the expression of miRNAs in HuH7 cells and exosomes. Our results demonstrated the therapeutic potential of Lenvatinib and provide molecular mechanistic insights into its antitumor effects for treating HCC.


Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest.

  • Kyoko Oura‎ et al.
  • Oncology reports‎
  • 2017‎

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and the third leading cause of cancer-related death. Telmisartan, a widely used antihypertensive drug, is an angiotensin II type 1 (AT1) receptor blocker (ARB) that might inhibit cancer cell proliferation, but the mechanisms through which telmisartan affects various cancers remain unknown. The aim of the present study was to evaluate the effects of telmisartan on human HCC and to assess the expression of microRNAs (miRNAs). We studied the effects of telmisartan on HCC cells using the HLF, HLE, HepG2, HuH-7 and PLC/PRF/5 cell lines. In our experiments, telmisartan inhibited the proliferation of HLF, HLE and HepG2 cells, which represent poorly differentiated types of HCC cells. However, HuH-7 and PLC/PRF/5 cells, which represent well-differentiated types of HCC cells, were not sensitive to telmisartan. Telmisartan induced G0/G1 cell cycle arrest of HLF cells by inhibiting the G0-to-G1 cell cycle transition. This blockade was accompanied by a marked decrease in the levels of cyclin D1, cyclin E and other cell cycle-related proteins. Notably, the activity of the AMP-activated protein kinase (AMPK) pathway was increased, and the mammalian target of rapamycin (mTOR) pathway was inhibited by telmisartan treatment. Additionally, telmisartan increased the level of caspase-cleaved cytokeratin 18 (cCK18), partially contributed to the induction of apoptosis in HLF cells and reduced the phosphorylation of ErbB3 in HLF cells. Furthermore, miRNA expression was markedly altered by telmisartan in vitro. In conclusion, telmisartan inhibits human HCC cell proliferation by inducing cell cycle arrest.


Angiotensin receptor blocker telmisartan inhibits cell proliferation and tumor growth of cholangiocarcinoma through cell cycle arrest.

  • Eri Samukawa‎ et al.
  • International journal of oncology‎
  • 2017‎

Cholangiocarcinoma (CCA) is at an advanced stage at the time of its diagnosis, and developing a more effective treatment of CCA would be desirable. Angiotensin II type 1 (AT1) receptor blocker (ARB), telmisartan may inhibit cancer cell proliferation, but the mechanisms by which telmisartan affects various cancers remain unknown. In this study, we evaluated the effects of telmisartan on human CCA cells and to assess the expression of microRNAs (miRNAs). We studied the effects of telmisartan on CCA cells using two cell lines, HuCCT-1 and TFK-1. In our experiments, telmisartan inhibited the proliferation of HuCCT-1 and TFK-1 cells. Additionally, telmisartan induced G0/G1 cell cycle arrest via blockade of the G0 to G1 cell cycle transition. Notably, telmisartan did not induce apoptosis in HuCCT-1 cells. This blockade was accompanied by a strong decrease in cell cycle-related protein, especially G1 cyclin, cyclin D1, and its catalytic subumits, Cdk4 and Cdk6. Telmisartan reduced the phosphorylation of EGFR (p-EGFR) and TIMP-1 by using p-RTK and angiogenesis array. Furthermore, miRNA expression was markedly altered by telmisartan in HuCCT-1. Telmisartan inhibits tumor growth in CCA xenograft model in vivo. In conclusion, telmisartan was shown to inhibit human CCA cell proliferation by inducing cell cycle arrest.


Human microRNAs preferentially target genes with intermediate levels of expression and its formation by mammalian evolution.

  • Hisakazu Iwama‎ et al.
  • PloS one‎
  • 2018‎

MicroRNAs (miRNAs) are short, endogenous RNAs that post-transcriptionally repress mRNAs. Over the course of evolution, many new miRNAs are known to have emerged and added to the existing miRNA repertoires of drosophilids and vertebrates. Despite the large number of miRNAs in existence, the complementary pairing of only ~7 bases between miRNAs and mRNAs is sufficient to induce repression. Thus, miRNA targeting is so widespread that genes coexpressed with a miRNA have evolved to avoid sites that are targeted by the miRNA. Besides this avoidance, little is known about the preferential modes of miRNA targeting. Therefore, to elucidate miRNA targeting preference and avoidance, we evaluated the bias of the number of miRNA targeting occurrences in relation to expression intensities of miRNAs and their coexpressed target mRNAs by surveying transcriptome data from human organs. We found that miRNAs preferentially target genes with intermediate levels of expression, while avoiding highly expressed ones, and that older miRNAs have greater targeting specificity, suggesting that specificity increases during the course of evolution.


Human microRNAs originated from two periods at accelerated rates in mammalian evolution.

  • Hisakazu Iwama‎ et al.
  • Molecular biology and evolution‎
  • 2013‎

MicroRNAs (miRNAs) are short, noncoding RNAs that modulate genes posttranscriptionally. Frequent gains and losses of miRNA genes have been reported to occur during evolution. However, little is known systematically about the periods of evolutionary origin of the present miRNA gene repertoire of an extant mammalian species. Thus, in this study, we estimated the evolutionary periods during which each of 1,433 present human miRNA genes originated within 15 periods, from human to platypus-human common ancestral branch and a class "conserved beyond theria," primarily using multiple genome alignments of 38 species, plus the pairwise genome alignments of five species. The results showed two peak periods in which the human miRNA genes originated at significantly accelerated rates. The most accelerated rate appeared in the period of the initial phase of hominoid lineage, and the second appeared shortly before Laurasiatherian divergence. Approximately 53% of the present human miRNA genes have originated within the simian lineage to human. In particular, approximately 28% originated within the hominoid lineage. The early phase of placental mammal radiation comprises approximately 28%, while no more than 15% of human miRNAs have been conserved beyond placental mammals. We also clearly showed a general trend, in which the miRNA expression level decreases as the miRNA becomes younger. Intriguingly, amid this decreasing trend of expression, we found one significant rise in the expression level that corresponded to the initial phase of the hominoid lineage, suggesting that increased functional acquisitions of miRNAs originated at this particular period.


Comprehensive analysis of circulating microRNAs as predictive biomarkers for sorafenib therapy outcome in hepatocellular carcinoma.

  • Tomoki Kohno‎ et al.
  • Oncology letters‎
  • 2020‎

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Clinical management has improved the prognosis of early HCC, but that of advanced HCC remains poor. Sorafenib, an oral multikinase inhibitor, provided a treatment option for advanced-stage HCC, and prolonged the survival and inhibited tumor progression as first-line therapy in patients with advanced HCC. In this study, we investigated if specific microRNAs could act as predictive biomarkers of sorafenib effectiveness and indicate the best time to switch to second-line therapies. Sorafenib inhibited the proliferation of the Li-7, Hep3B, HepG2 and Huh7 liver cancer cell lines (effective group), but not that of the HLE, HLF and ALEX cancer cell lines (non-effective group). A microRNA (miRNA/miR) analysis was performed comparing sorafenib-effective and non-effective cells lines as well as serum samples from patients with HCC from sorafenib-effective (complete response/partial response) and -non-effective (progressive disease) groups before sorafenib administration and detected three differentially-expressed miRNAs that were common among the in vivo and in vitro samples. The increase rate (effective/non-effective) of hsa-miR-30d in the medium was higher than that in the cancer cells. hsa-miR-30d was highly expressed in the serum and exosomes of patients with HCC in the effective group when compared to those of the non-effective group. Additionally, the hsa-miR-30d expression in the medium of cancer cell lines was highly upregulated in the effective group compared with the non-effective group. These results suggested that hsa-miR-30d might be secreted by the cancer cells to the serum through the exosomes. We identified a specific circulating miRNA that is related to refractory HCC under sorafenib therapy. Therefore, hsa-miR-30d might serve as a predictive biomarker for the efficacy of sorafenib therapy in HCC.


Aspirin inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo via inducing cell cycle arrest and apoptosis.

  • Tingting Shi‎ et al.
  • Oncology reports‎
  • 2020‎

Aspirin, a nonsteroidal anti‑inflammatory drug (NSAID), is known to inhibit cell proliferation in a variety of cancers. However, the underlying mechanism of this inhibition remains unknown. We investigated the effects of aspirin on hepatocellular carcinoma (HCC) cells using in vitro and in vivo models. Six HCC cell lines and a liver cancer cell line including Huh‑7 were used in assays that evaluated cell proliferation, cell cycle, and apoptosis. Flow cytometry, enzyme‑linked immunosorbent assay (ELISA), western blot analysis, and phosphorylated receptor tyrosine kinase array were used to evaluate the effects of aspirin on the cells, and microRNAs (miRNAs) were analyzed by a miRNA array chip. The results were validated in vivo using a nude mouse model of Huh‑7‑xenografted tumors. Our results showed that aspirin exhibited an antiproliferative effect on all cell lines. Moreover, aspirin induced G0/G1 cell cycle arrest and modulated the levels of cell cycle‑related molecules such as cyclin E, cyclin D1, and cyclin‑dependent kinase 2 (Cdk2). In addition, aspirin upregulated the levels of caspase‑cleaved cytokeratin 18, increased the proportion of early apoptotic cells, decreased the levels of clusterin and heat shock protein 70 (HSP 70), upregulated the levels of miRNA‑137 and inhibited epidermal growth factor receptor (EGFR) activation. In addition, we observed that aspirin suppressed cell proliferation partially through the miRNA‑137/EGFR pathway. Our in vivo results showed that aspirin reduced the growth of xenograft tumors in nude mice. In conclusion, aspirin was able to inhibit the growth of HCC cells by cell cycle arrest, apoptosis, and alteration of miRNA levels in in vitro and in vivo models.


The angiotensin II type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKα/mTOR pathway in vitro and in vivo.

  • Shintaro Fujihara‎ et al.
  • Oncotarget‎
  • 2017‎

Telmisartan, a widely used antihypertensive drug, is an angiotensin II type 1 (AT1) receptor blocker (ARB). This drug inhibits cancer cell proliferation, but the underlying mechanisms in various cancers, including esophageal cancer, remain unknown. The aim of the present study was to evaluate the effects of telmisartan on human esophageal cancer cell proliferation in vitro and in vivo. We assessed the effects of telmisartan on human esophageal adenocarcinoma (EAC) cells using the cell lines OE19, OE33, and SKGT-4. Telmisartan inhibited the proliferation of these three cell lines via blockade of the G0 to G1 cell cycle transition. This blockade was accompanied by a strong decrease in cyclin D1, cyclin E, and other cell cycle-related proteins. Notably, the AMP-activated protein kinase (AMPK) pathway, a fuel sensor signaling pathway, was enhanced by telmisartan. Compound C, which inhibits the two catalytic subunits of AMPK, enhanced the expression of cyclin E, leading to G0/G1 arrest in human EAC cells. In addition, telmisartan reduced the phosphorylation of epidermal growth factor receptor (p-EGFR) and ERBB2 in vitro. In our in vivo study, intraperitoneal injection of telmisartan led to a 73.2% reduction in tumor growth in mice bearing xenografts derived from OE19 cells. Furthermore, miRNA expression was significantly altered by telmisartan in vitro and in vivo. In conclusion, telmisartan suppressed human EAC cell proliferation and tumor growth by inducing cell cycle arrest via the AMPK/mTOR pathway.


SRSF1-3 contributes to diversification of the immunoglobulin variable region gene by promoting accumulation of AID in the nucleus.

  • Yuka Kawaguchi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this study, we examined whether SRSF1-3 functions in IgV diversification by promoting nuclear localization of AID. AID expressed alone was localized predominantly in the cytoplasm. In contrast, co-expression of AID with SRSF1-3 led to the nuclear accumulation of both AID and SRSF1-3 and the formation of a protein complex that contained them both, although SRSF1-3 was dispensable for nuclear import of AID. Expression of either SRSF1-3 or a C-terminally-truncated AID mutant increased IgV diversification in DT40 cells. However, overexpression of exogenous SRSF1-3 was unable to further enhance IgV diversification in DT40 cells expressing the truncated AID mutant, although SRSF1-3 was able to form a protein complex with the AID mutant. These results suggest that SRSF1-3 promotes nuclear localization of AID probably by forming a nuclear protein complex, which might stabilize nuclear AID and induce IgV diversification in an AID C-terminus-dependent manner.


Galectin‑9 suppresses the tumor growth of colon cancer in vitro and in vivo.

  • Asahiro Morishita‎ et al.
  • Oncology reports‎
  • 2021‎

Colon cancer is the second leading cause of cancer‑related mortality worldwide, and the prognosis of advanced colon cancer has remained poor in recent years. Galectin‑9 (Gal‑9) is a tandem‑repeat type galectin that has recently been shown to exert antiproliferative effects on various types of cancer cells. The present study aimed to assess the effects of Gal‑9 on human colon and colorectal cancer cells in vitro and in vivo, as well as to evaluate the microRNAs (miRNAs/miRs) associated with the antitumor effects of Gal‑9. We examined the ability of Gal‑9 to inhibit cell proliferation via apoptosis, and the effects of Gal‑9 on cell cycle‑related molecules in various human colon and colorectal cancer cell lines. In addition, Gal‑9‑mediated changes in activated tyrosine kinase receptors and angiogenic molecules were assessed using protein array chips in colon and colorectal cancer cells. Moreover, miRNA array analysis was performed to examine Gal‑9‑induced miRNA expression profiles. We also elucidated if Gal‑9 inhibited tumor growth in a murine in vivo model. We found that Gal‑9 suppressed the cell proliferation of colon cancer cell lines in vitro and in vivo. Our data further revealed that Gal‑9 increased caspase‑cleaved keratin 18 levels in Gal‑9‑treated colon cancer cells. In addition, Gal‑9 enhanced the phosphorylation of ALK, DDR1, and EphA10 proteins. Furthermore, the miRNA expression levels, such as miR‑1246, miR‑15b‑5p, and miR‑1237, were markedly altered by Gal‑9 treatment in vitro and in vivo. In conclusion, Gal‑9 suppresses the cell proliferation of human colon cancer by inducing apoptosis, and these findings suggest that Gal‑9 can be a potential therapeutic target in the treatment of colon cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: