Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Selective Laminin-Directed Differentiation of Human Induced Pluripotent Stem Cells into Distinct Ocular Lineages.

  • Shun Shibata‎ et al.
  • Cell reports‎
  • 2018‎

The extracellular matrix plays a key role in stem cell maintenance, expansion, and differentiation. Laminin, a basement membrane protein, is a widely used substrate for cell culture including the growth of human induced pluripotent stem cells (hiPSCs). Here, we show that different isoforms of laminin lead to the selective differentiation of hiPSCs into different eye-like tissues. Specifically, the 211 isoform of the E8 fragment of laminin (LN211E8) promotes differentiation into neural crest cells via Wnt activation, whereas LN332E8 promotes differentiation into corneal epithelial cells. The immunohistochemical distributions of these laminin isoforms in the developing mouse eye mirrors the hiPSC type that was induced in vitro. Moreover, LN511E8 enables generation of dense hiPSC colonies due to actomyosin contraction, which in turn led to cell density-dependent YAP inactivation and subsequent retinal differentiation in colony centers. Thus, distinct laminin isoforms determine the fate of expanded hiPSCs into eye-like tissues.


CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells.

  • Ryuhei Hayashi‎ et al.
  • Scientific reports‎
  • 2018‎

The in vitro induction of corneal epithelial cells (CECs) from human induced pluripotent stem cells (iPSCs) represents a new strategy for obtaining CE stem/progenitor cells for the surgical reconstruction of a diseased or injured ocular surface. The clinical promise of this strategy is considerable, but if the approaches' potential is to be realised, robust methods for the purification of iPSC-derived CE lineage cells need to be developed to avoid contamination with other cells that may carry the risk of unwanted side effects, such as tumorigenesis. Experiments conducted here revealed that during CEC isolation, CD200-negative selection using a cell sorter considerably reduced the contamination of the cell population with various non-CECs compared with what could be achieved using TRA-1-60, a conventional negative marker for CECs. Furthermore, CD200-negative sorting did not affect the yield of CECs nor that of their stem/progenitor cells. Single-cell gene expression analysis for CEC sheets obtained using CD200-negative sorting showed that all analysed cells were CE-lineage cells, expressing PAX6, delta-N p63, and E-cadherin. Non-CECs, on the other hand, expressed non-CEC genes such as FGFR1 and RPE65. CD200, thus, represents a robust negative marker for purification of induced CE lineage cells, which is expressed by undifferentiated iPSCs and non-CECs, including iPSC-derived neural and retinal cells.


Bacteriological incidence in pneumonia patients with pulmonary emphysema: a bacterial floral analysis using the 16S ribosomal RNA gene in bronchoalveolar lavage fluid.

  • Keisuke Naito‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2017‎

Pulmonary emphysema is an important radiological finding in chronic obstructive pulmonary disease patients, but bacteriological differences in pneumonia patients according to the severity of emphysematous changes have not been reported. Therefore, we evaluated the bacteriological incidence in the bronchoalveolar lavage fluid (BALF) of pneumonia patients using cultivation and a culture-independent molecular method. Japanese patients with community-acquired pneumonia (83) and healthcare-associated pneumonia (94) between April 2010 and February 2014 were evaluated. The BALF obtained from pneumonia lesions was evaluated by both cultivation and a molecular method. In the molecular method, ~600 base pairs of bacterial 16S ribosomal RNA genes in the BALF were amplified by polymerase chain reaction, and clone libraries were constructed. The nucleotide sequences of 96 randomly selected colonies were determined, and a homology search was performed to identify the bacterial species. A qualitative radiological evaluation of pulmonary emphysema based on chest computed tomography (CT) images was performed using the Goddard classification. The severity of pulmonary emphysema based on the Goddard classification was none in 47.4% (84/177), mild in 36.2% (64/177), moderate in 10.2% (18/177), and severe in 6.2% (11/177). Using the culture-independent molecular method, Moraxella catarrhalis was significantly more frequently detected in moderate or severe emphysema patients than in patients with no or mild emphysematous changes. The detection rates of Haemophilus influenzae and Pseudomonas aeruginosa were unrelated to the severity of pulmonary emphysematous changes, and Streptococcus species - except for the S. anginosus group and S. pneumoniae - were detected more frequently using the molecular method we used for the BALF of patients with pneumonia than using culture methods. Our findings suggest that M. catarrhalis is more frequently detected in pneumonia patients with moderate or severe emphysema than in those with no or mild emphysematous changes on chest CT. M. catarrhalis may play a major role in patients with pneumonia complicating severe pulmonary emphysema.


Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior.

  • Samantha J Hindle‎ et al.
  • Cell reports‎
  • 2017‎

Central nervous system (CNS) chemical protection depends upon discrete control of small-molecule access by the blood-brain barrier (BBB). Curiously, some drugs cause CNS side-effects despite negligible transit past the BBB. To investigate this phenomenon, we asked whether the highly BBB-enriched drug efflux transporter MDR1 has dual functions in controlling drug and endogenous molecule CNS homeostasis. If this is true, then brain-impermeable drugs could induce behavioral changes by affecting brain levels of endogenous molecules. Using computational, genetic, and pharmacologic approaches across diverse organisms, we demonstrate that BBB-localized efflux transporters are critical for regulating brain levels of endogenous steroids and steroid-regulated behaviors (sleep in Drosophila and anxiety in mice). Furthermore, we show that MDR1-interacting drugs are associated with anxiety-related behaviors in humans. We propose a general mechanism for common behavioral side effects of prescription drugs: pharmacologically challenging BBB efflux transporters disrupts brain levels of endogenous substrates and implicates the BBB in behavioral regulation.


Presence of heat shock protein 47-positive fibroblasts in cancer stroma is associated with increased risk of postoperative recurrence in patients with lung cancer.

  • Takuto Miyamura‎ et al.
  • Respiratory research‎
  • 2020‎

Heat shock protein 47 (HSP47), a collagen-binding protein, has a specific role in the intracellular processing of procollagen production. HSP47 expression is associated with cancer growth and metastasis in several types of cancers. However, none of the studies have assessed whether HSP47 expression is associated with the risk of postoperative recurrence of lung cancer until now. Therefore, we aimed to assess this association.


Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes.

  • Erica P Cai‎ et al.
  • Nature metabolism‎
  • 2020‎

Type 1 diabetes (T1D) is caused by the autoimmune destruction of pancreatic beta cells. Pluripotent stem cells can now be differentiated into beta cells, thus raising the prospect of a cell replacement therapy for T1D. However, autoimmunity would rapidly destroy newly transplanted beta cells. Using a genome-scale CRISPR screen in a mouse model for T1D, we show that deleting RNLS, a genome-wide association study candidate gene for T1D, made beta cells resistant to autoimmune killing. Structure-based modelling identified the U.S. Food and Drug Administration-approved drug pargyline as a potential RNLS inhibitor. Oral pargyline treatment protected transplanted beta cells in diabetic mice, thus leading to disease reversal. Furthermore, pargyline prevented or delayed diabetes onset in several mouse models for T1D. Our results identify RNLS as a modifier of beta cell vulnerability and as a potential therapeutic target to avert beta cell loss in T1D.


CD5 Controls Gut Immunity by Shaping the Cytokine Profile of Intestinal T Cells.

  • Cornelia Schuster‎ et al.
  • Frontiers in immunology‎
  • 2022‎

CD5 is constitutively expressed on all T cells and is a negative regulator of lymphocyte function. However, the full extent of CD5 function in immunity remains unclear. CD5 deficiency impacts thymic selection and extra-thymic regulatory T cell generation, yet CD5 knockout was reported to cause no immune pathology. Here we show that CD5 is a key modulator of gut immunity. We generated mice with inducible CD5 knockdown (KD) in the autoimmune-prone nonobese diabetic (NOD) background. CD5 deficiency caused T cell-dependent wasting disease driven by chronic gut immune dysregulation. CD5 inhibition also exacerbated acute experimental colitis. Mechanistically, loss of CD5 increased phospho-Stat3 levels, leading to elevated IL-17A secretion. Our data reveal a new facet of CD5 function in shaping the T cell cytokine profile.


Increased β-cell proliferation before immune cell invasion prevents progression of type 1 diabetes.

  • Ercument Dirice‎ et al.
  • Nature metabolism‎
  • 2019‎

Type 1 diabetes (T1D) is characterized by pancreatic islet infiltration by autoreactive immune cells and a near-total loss of β-cells1. Restoration of insulin-producing β-cells coupled with immunomodulation to suppress the autoimmune attack has emerged as a potential approach to counter T1D2-4. Here we report that enhancing β-cell mass early in life, in two models of female NOD mice, results in immunomodulation of T-cells, reduced islet infiltration and lower β-cell apoptosis, that together protect them from developing T1D. The animals displayed altered β-cell antigens, and islet transplantation studies showed prolonged graft survival in the NOD-LIRKO model. Adoptive transfer of splenocytes from the NOD-LIRKOs prevented development of diabetes in pre-diabetic NOD mice. A significant increase in the splenic CD4+CD25+FoxP3+ regulatory T-cell (Treg) population was observed to underlie the protected phenotype since Treg depletion rendered NOD-LIRKO mice diabetic. The increase in Tregs coupled with activation of TGF-β/SMAD3 signaling pathway in pathogenic T-cells favored reduced ability to kill β-cells. These data support a previously unidentified observation that initiating β-cell proliferation, alone, prior to islet infiltration by immune cells alters the identity of β-cells, decreases pathologic self-reactivity of effector cells and increases Tregs to prevent progression of T1D.


Stereotyped Combination of Hearing and Wind/Gravity-Sensing Neurons in the Johnston's Organ of Drosophila.

  • Yuki Ishikawa‎ et al.
  • Frontiers in physiology‎
  • 2019‎

The antennal ear of the fruit fly, called the Johnston's organ (JO), detects a wide variety of mechanosensory stimuli, including sound, wind, and gravity. Like many sensory cells in insect, JO neurons are compartmentalized in a sensory unit (i.e., scolopidium). To understand how different subgroups of JO neurons are organized in each scolopidial compartment, we visualized individual JO neurons by labeling various subgroups of JO neurons in different combinations. We found that vibration-sensitive (or deflection-sensitive) neurons rarely grouped together in a single scolopidial compartment. This finding suggests that JO neurons are grouped in stereotypical combinations each with a distinct response property in a scolopidium.


GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region.

  • Yuki Ishikawa‎ et al.
  • Nature communications‎
  • 2024‎

Here we report the largest Asian genome-wide association study (GWAS) for systemic sclerosis performed to date, based on data from Japanese subjects and comprising of 1428 cases and 112,599 controls. The lead SNP is in the FCGR/FCRL region, which shows a penetrating association in the Asian population, while a complete linkage disequilibrium SNP, rs10917688, is found in a cis-regulatory element for IRF8. IRF8 is also a significant locus in European GWAS for systemic sclerosis, but rs10917688 only shows an association in the presence of the risk allele of IRF8 in the Japanese population. Further analysis shows that rs10917688 is marked with H3K4me1 in primary B cells. A meta-analysis with a European GWAS detects 30 additional significant loci. Polygenic risk scores constructed with the effect sizes of the meta-analysis suggest the potential portability of genetic associations beyond populations. Prioritizing the top 5% of SNPs of IRF8 binding sites in B cells improves the fitting of the polygenic risk scores, underscoring the roles of B cells and IRF8 in the development of systemic sclerosis. The results also suggest that systemic sclerosis shares a common genetic architecture across populations.


STEFTR: A Hybrid Versatile Method for State Estimation and Feature Extraction From the Trajectory of Animal Behavior.

  • Shuhei J Yamazaki‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Animal behavior is the final and integrated output of brain activity. Thus, recording and analyzing behavior is critical to understand the underlying brain function. While recording animal behavior has become easier than ever with the development of compact and inexpensive devices, detailed behavioral data analysis requires sufficient prior knowledge and/or high content data such as video images of animal postures, which makes it difficult for most of the animal behavioral data to be efficiently analyzed. Here, we report a versatile method using a hybrid supervised/unsupervised machine learning approach for behavioral state estimation and feature extraction (STEFTR) only from low-content animal trajectory data. To demonstrate the effectiveness of the proposed method, we analyzed trajectory data of worms, fruit flies, rats, and bats in the laboratories, and penguins and flying seabirds in the wild, which were recorded with various methods and span a wide range of spatiotemporal scales-from mm to 1,000 km in space and from sub-seconds to days in time. We successfully estimated several states during behavior and comprehensively extracted characteristic features from a behavioral state and/or a specific experimental condition. Physiological and genetic experiments in worms revealed that the extracted behavioral features reflected specific neural or gene activities. Thus, our method provides a versatile and unbiased way to extract behavioral features from simple trajectory data to understand brain function.


Efficacy of concurrent treatments in idiopathic pulmonary fibrosis patients with a rapid progression of respiratory failure: an analysis of a national administrative database in Japan.

  • Keishi Oda‎ et al.
  • BMC pulmonary medicine‎
  • 2016‎

Some IPF patients show a rapid progression of respiratory failure. Most patients are treated with high-dose corticosteroids. However, no large clinical studies have investigated the prognosis or efficacy of combined treatments including high-dose corticosteroids in IPF patients with a rapid progression of respiratory failure.


Clinical impact of methicillin-resistant staphylococcus aureus on bacterial pneumonia: cultivation and 16S ribosomal RNA gene analysis of bronchoalveolar lavage fluid.

  • Toshinori Kawanami‎ et al.
  • BMC infectious diseases‎
  • 2016‎

Determining whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen or reflective of colonization when MRSA is cultured from the respiratory tract remains important in treating patients with pneumonia.


Bacteriological assessment of healthcare-associated pneumonia using a clone library analysis.

  • Shingo Noguchi‎ et al.
  • PloS one‎
  • 2015‎

The causative pathogens of healthcare-associated pneumonia (HCAP) remain controversial, and the use of conventional cultivation of sputum samples is occasionally inappropriate due to the potential for oral bacterial contamination. It is also sometimes difficult to determine whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen of HCAP.


Elevated α-defensin levels in plasma and bronchoalveolar lavage fluid from patients with myositis-associated interstitial lung disease.

  • Noriho Sakamoto‎ et al.
  • BMC pulmonary medicine‎
  • 2018‎

Interstitial lung disease (ILD) is a prognostic indicator of poor outcome in myositis. Although the pathogenesis of myositis-associated ILD is not well understood, neutrophils are thought to play a pivotal role. Neutrophils store azurophil granules that contain defensins, which are antimicrobial peptides that regulate the inflammatory response. Here, we evaluated levels of the human neutrophil peptides (HNPs) α-defensin 1 through 3 in patients with myositis-associated ILD to determine whether HNPs represent disease markers and play a role in the pathogenesis of myositis-associated ILD.


Auditory experience controls the maturation of song discrimination and sexual response in Drosophila.

  • Xiaodong Li‎ et al.
  • eLife‎
  • 2018‎

In birds and higher mammals, auditory experience during development is critical to discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. In fruit flies, acoustic perception has been thought to be innate. Here we report, surprisingly, that auditory experience of a species-specific courtship song in developing Drosophila shapes adult song perception and resultant sexual behavior. Preferences in the song-response behaviors of both males and females were tuned by social acoustic exposure during development. We examined the molecular and cellular determinants of this social acoustic learning and found that GABA signaling acting on the GABAA receptor Rdl in the pC1 neurons, the integration node for courtship stimuli, regulated auditory tuning and sexual behavior. These findings demonstrate that maturation of auditory perception in flies is unexpectedly plastic and is acquired socially, providing a model to investigate how song learning regulates mating preference in insects.


A conserved long noncoding RNA affects sleep behavior in Drosophila.

  • Alexey A Soshnev‎ et al.
  • Genetics‎
  • 2011‎

Metazoan genomes encode an abundant collection of mRNA-like, long noncoding (lnc)RNAs. Although lncRNAs greatly expand the transcriptional repertoire, we have a limited understanding of how these RNAs contribute to developmental regulation. Here, we investigate the function of the Drosophila lncRNA called yellow-achaete intergenic RNA (yar). Comparative sequence analyses show that the yar gene is conserved in Drosophila species representing 40-60 million years of evolution, with one of the conserved sequence motifs encompassing the yar promoter. Further, the timing of yar expression in Drosophila virilis parallels that in D. melanogaster, suggesting that transcriptional regulation of yar is conserved. The function of yar was defined by generating null alleles. Flies lacking yar RNAs are viable and show no overt morphological defects, consistent with maintained transcriptional regulation of the adjacent yellow (y) and achaete (ac) genes. The location of yar within a neural gene cluster led to the investigation of effects of yar in behavioral assays. These studies demonstrated that loss of yar alters sleep regulation in the context of a normal circadian rhythm. Nighttime sleep was reduced and fragmented, with yar mutants displaying diminished sleep rebound following sleep deprivation. Importantly, these defects were rescued by a yar transgene. These data provide the first example of a lncRNA gene involved in Drosophila sleep regulation. We find that yar is a cytoplasmic lncRNA, suggesting that yar may regulate sleep by affecting stabilization or translational regulation of mRNAs. Such functions of lncRNAs may extend to vertebrates, as lncRNAs are abundant in neural tissues.


Distinct decision-making properties underlying the species specificity of group formation of flies.

  • Riku Shirasaki‎ et al.
  • Royal Society open science‎
  • 2022‎

Many animal species form groups. Group characteristics differ between species, suggesting that the decision-making of individuals for grouping varies across species. However, the actual decision-making properties that lead to interspecific differences in group characteristics remain unclear. Here, we compared the group formation processes of two Drosophilinae fly species, Colocasiomyia alocasiae and Drosophila melanogaster, which form dense and sparse groups, respectively. A high-throughput tracking system revealed that C. alocasiae flies formed groups faster than D. melanogaster flies, and the probability of C. alocasiae remaining in groups was far higher than that of D. melanogaster. C. alocasiae flies joined groups even when the group size was small, whereas D. melanogaster flies joined groups only when the group size was sufficiently large. C. alocasiae flies attenuated their walking speed when the inter-individual distance between flies became small, whereas such behavioural properties were not clearly observed in D. melanogaster. Furthermore, depriving C. alocasiae flies of visual input affected grouping behaviours, resulting in a severe reduction in group formation. These findings show that C. alocasiae decision-making regarding grouping, which greatly depends on vision, is significantly different from D. melanogaster, leading to species-specific group formation properties.


The function of appendage patterning genes in mandible development of the sexually dimorphic stag beetle.

  • Hiroki Gotoh‎ et al.
  • Developmental biology‎
  • 2017‎

One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.


Selectivity and plasticity in a sound-evoked male-male interaction in Drosophila.

  • Jeonghyeon Yoon‎ et al.
  • PloS one‎
  • 2013‎

During courtship, many animals, including insects, birds, fish, and mammals, utilize acoustic signals to transmit information about species identity. Although auditory communication is crucial across phyla, the neuronal and physiologic processes are poorly understood. Sound-evoked chaining behavior, a display of homosexual courtship behavior in Drosophila males, has long been used as an excellent model for analyzing auditory behavior responses, outcomes of acoustic perception and higher-order brain functions. Here we developed a new method, termed ChaIN (Chain Index Numerator), in which we use a computer-based auto detection system for chaining behavior. The ChaIN system can systematically detect the chaining behavior induced by a series of modified courtship song playbacks. Two evolutionarily related Drosophila species, Drosophila melanogaster and Drosophila simulans, exhibited dramatic selective increases in chaining behavior when exposed to specific auditory cues, suggesting that auditory discrimination processes are involved in the acceleration of chaining behavior. Prolonged monotonous pulse sounds containing courtship song components also induced high intense chaining behavior. Interestingly, the chaining behavior was gradually suppressed over time when song playback continued. This behavioral change is likely to be a plastic behavior and not a simple sensory adaptation or fatigue, because the suppression was released by applying a different pulse pattern. This behavioral plasticity is not a form of habituation because different modality stimuli did not recover the behavioral suppression. Intriguingly, this plastic behavior partially depended on the cAMP signaling pathway controlled by the rutabaga adenylyl cyclase gene that is important for learning and memory. Taken together, this study demonstrates the selectivity and behavioral kinetics of the sound-induced interacting behavior of Drosophila males, and provides a basis for the systematic analysis of genes and neural circuits underlying complex acoustic behavior.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: